DFT study of anatase-derived TiO2 nanosheets/graphene hybrid materials

In this work, we focus on the impact that the interface structure formed by graphene and a bilayer of anatase (001)‐oriented exerts on electronic and optical properties of the final nanocomposite. In order to perform such analysis, we have modeled, optimized, and investigated the electronic properti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:physica status solidi (b) 2014-08, Vol.251 (8), p.1471-1479
Hauptverfasser: Masuda, Yasuyuki, Giorgi, Giacomo, Yamashita, Koichi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1479
container_issue 8
container_start_page 1471
container_title physica status solidi (b)
container_volume 251
creator Masuda, Yasuyuki
Giorgi, Giacomo
Yamashita, Koichi
description In this work, we focus on the impact that the interface structure formed by graphene and a bilayer of anatase (001)‐oriented exerts on electronic and optical properties of the final nanocomposite. In order to perform such analysis, we have modeled, optimized, and investigated the electronic properties of several graphene–TiO2 hybrids by means of density functional theory based calculations. Our results suggest that the physisorbed system is less electronically coupled and does not enhance the photoresponsivity in the visible region. On the other hand, the chemical bond between graphene and TiO2 nanosheet, a TiOC bridge, clearly makes the two components highly electronically coupled and the graphene oxide (GO)/TiO2 chemisorbed system is characterized by a higher photoresponsivity in the visible region. This result is ascribed to the raise of a new valence band maximum state that lies in the pristine bandgap of TiO2 nanosheet, consequence of the hybridization between GO and TiO2. Interfaces formed by TiO2 (001)‐oriented nanosheets (NS) and graphene are investigated. In particular, both the cases of “wet” and “dry” environments (with and without water molecules) are considered. The presence of a direct bond Ti–O–C at the interface (chemisorption) induces intriguing electronic/optical features not detected for the physisorbed, dry, hybrid systems. The interface between TiO2 NS and graphene oxide (oxygen atoms in epoxidic fashion) is similarly investigated.
doi_str_mv 10.1002/pssb.201451089
format Article
fullrecord <record><control><sourceid>wiley_istex</sourceid><recordid>TN_cdi_wiley_primary_10_1002_pssb_201451089_PSSB201451089</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>PSSB201451089</sourcerecordid><originalsourceid>FETCH-LOGICAL-g3789-60f82cb542679fb66ef9fab1c1f4771b87c6afa2aaa66189c9eaa1ccdb830f2e3</originalsourceid><addsrcrecordid>eNo9kMFOAjEURRujiYhuXfcHCn0t006XigIaIiYgJm6a15kWRmEg00GdvxeCYXVzk3vu4hByC7wDnIvuNkbXERx6CfDUnJEWJAKYNAmckxaXmjMwWlySqxg_OecaJLTI4GEwo7He5Q3dBIol1hg9y31VfPuczoqJoCWWm7j0vo7dRYXbpS89XTauKnK6xnq_xFW8JhdhH_7mP9vkbfA464_YeDJ86t-N2ULq1DDFQyoyl_SE0iY4pXwwAR1kEHpag0t1pjCgQESlIDWZ8YiQZblLJQ_CyzYxx9-fYuUbu62KNVaNBW4PCuxBgT0psK_T6f2p7Vl2ZItY-98Ti9WXVVrqxL6_DO3zSH7M-bxvE_kHSclizQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>DFT study of anatase-derived TiO2 nanosheets/graphene hybrid materials</title><source>Access via Wiley Online Library</source><creator>Masuda, Yasuyuki ; Giorgi, Giacomo ; Yamashita, Koichi</creator><creatorcontrib>Masuda, Yasuyuki ; Giorgi, Giacomo ; Yamashita, Koichi</creatorcontrib><description>In this work, we focus on the impact that the interface structure formed by graphene and a bilayer of anatase (001)‐oriented exerts on electronic and optical properties of the final nanocomposite. In order to perform such analysis, we have modeled, optimized, and investigated the electronic properties of several graphene–TiO2 hybrids by means of density functional theory based calculations. Our results suggest that the physisorbed system is less electronically coupled and does not enhance the photoresponsivity in the visible region. On the other hand, the chemical bond between graphene and TiO2 nanosheet, a TiOC bridge, clearly makes the two components highly electronically coupled and the graphene oxide (GO)/TiO2 chemisorbed system is characterized by a higher photoresponsivity in the visible region. This result is ascribed to the raise of a new valence band maximum state that lies in the pristine bandgap of TiO2 nanosheet, consequence of the hybridization between GO and TiO2. Interfaces formed by TiO2 (001)‐oriented nanosheets (NS) and graphene are investigated. In particular, both the cases of “wet” and “dry” environments (with and without water molecules) are considered. The presence of a direct bond Ti–O–C at the interface (chemisorption) induces intriguing electronic/optical features not detected for the physisorbed, dry, hybrid systems. The interface between TiO2 NS and graphene oxide (oxygen atoms in epoxidic fashion) is similarly investigated.</description><identifier>ISSN: 0370-1972</identifier><identifier>EISSN: 1521-3951</identifier><identifier>DOI: 10.1002/pssb.201451089</identifier><language>eng</language><publisher>Blackwell Publishing Ltd</publisher><subject>density functional theory ; graphene ; inorganic-organic hybrid materials ; photocatalysis ; TiO2</subject><ispartof>physica status solidi (b), 2014-08, Vol.251 (8), p.1471-1479</ispartof><rights>2014 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpssb.201451089$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpssb.201451089$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Masuda, Yasuyuki</creatorcontrib><creatorcontrib>Giorgi, Giacomo</creatorcontrib><creatorcontrib>Yamashita, Koichi</creatorcontrib><title>DFT study of anatase-derived TiO2 nanosheets/graphene hybrid materials</title><title>physica status solidi (b)</title><addtitle>Phys. Status Solidi B</addtitle><description>In this work, we focus on the impact that the interface structure formed by graphene and a bilayer of anatase (001)‐oriented exerts on electronic and optical properties of the final nanocomposite. In order to perform such analysis, we have modeled, optimized, and investigated the electronic properties of several graphene–TiO2 hybrids by means of density functional theory based calculations. Our results suggest that the physisorbed system is less electronically coupled and does not enhance the photoresponsivity in the visible region. On the other hand, the chemical bond between graphene and TiO2 nanosheet, a TiOC bridge, clearly makes the two components highly electronically coupled and the graphene oxide (GO)/TiO2 chemisorbed system is characterized by a higher photoresponsivity in the visible region. This result is ascribed to the raise of a new valence band maximum state that lies in the pristine bandgap of TiO2 nanosheet, consequence of the hybridization between GO and TiO2. Interfaces formed by TiO2 (001)‐oriented nanosheets (NS) and graphene are investigated. In particular, both the cases of “wet” and “dry” environments (with and without water molecules) are considered. The presence of a direct bond Ti–O–C at the interface (chemisorption) induces intriguing electronic/optical features not detected for the physisorbed, dry, hybrid systems. The interface between TiO2 NS and graphene oxide (oxygen atoms in epoxidic fashion) is similarly investigated.</description><subject>density functional theory</subject><subject>graphene</subject><subject>inorganic-organic hybrid materials</subject><subject>photocatalysis</subject><subject>TiO2</subject><issn>0370-1972</issn><issn>1521-3951</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo9kMFOAjEURRujiYhuXfcHCn0t006XigIaIiYgJm6a15kWRmEg00GdvxeCYXVzk3vu4hByC7wDnIvuNkbXERx6CfDUnJEWJAKYNAmckxaXmjMwWlySqxg_OecaJLTI4GEwo7He5Q3dBIol1hg9y31VfPuczoqJoCWWm7j0vo7dRYXbpS89XTauKnK6xnq_xFW8JhdhH_7mP9vkbfA464_YeDJ86t-N2ULq1DDFQyoyl_SE0iY4pXwwAR1kEHpag0t1pjCgQESlIDWZ8YiQZblLJQ_CyzYxx9-fYuUbu62KNVaNBW4PCuxBgT0psK_T6f2p7Vl2ZItY-98Ti9WXVVrqxL6_DO3zSH7M-bxvE_kHSclizQ</recordid><startdate>201408</startdate><enddate>201408</enddate><creator>Masuda, Yasuyuki</creator><creator>Giorgi, Giacomo</creator><creator>Yamashita, Koichi</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope></search><sort><creationdate>201408</creationdate><title>DFT study of anatase-derived TiO2 nanosheets/graphene hybrid materials</title><author>Masuda, Yasuyuki ; Giorgi, Giacomo ; Yamashita, Koichi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g3789-60f82cb542679fb66ef9fab1c1f4771b87c6afa2aaa66189c9eaa1ccdb830f2e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>density functional theory</topic><topic>graphene</topic><topic>inorganic-organic hybrid materials</topic><topic>photocatalysis</topic><topic>TiO2</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Masuda, Yasuyuki</creatorcontrib><creatorcontrib>Giorgi, Giacomo</creatorcontrib><creatorcontrib>Yamashita, Koichi</creatorcontrib><collection>Istex</collection><jtitle>physica status solidi (b)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Masuda, Yasuyuki</au><au>Giorgi, Giacomo</au><au>Yamashita, Koichi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DFT study of anatase-derived TiO2 nanosheets/graphene hybrid materials</atitle><jtitle>physica status solidi (b)</jtitle><addtitle>Phys. Status Solidi B</addtitle><date>2014-08</date><risdate>2014</risdate><volume>251</volume><issue>8</issue><spage>1471</spage><epage>1479</epage><pages>1471-1479</pages><issn>0370-1972</issn><eissn>1521-3951</eissn><abstract>In this work, we focus on the impact that the interface structure formed by graphene and a bilayer of anatase (001)‐oriented exerts on electronic and optical properties of the final nanocomposite. In order to perform such analysis, we have modeled, optimized, and investigated the electronic properties of several graphene–TiO2 hybrids by means of density functional theory based calculations. Our results suggest that the physisorbed system is less electronically coupled and does not enhance the photoresponsivity in the visible region. On the other hand, the chemical bond between graphene and TiO2 nanosheet, a TiOC bridge, clearly makes the two components highly electronically coupled and the graphene oxide (GO)/TiO2 chemisorbed system is characterized by a higher photoresponsivity in the visible region. This result is ascribed to the raise of a new valence band maximum state that lies in the pristine bandgap of TiO2 nanosheet, consequence of the hybridization between GO and TiO2. Interfaces formed by TiO2 (001)‐oriented nanosheets (NS) and graphene are investigated. In particular, both the cases of “wet” and “dry” environments (with and without water molecules) are considered. The presence of a direct bond Ti–O–C at the interface (chemisorption) induces intriguing electronic/optical features not detected for the physisorbed, dry, hybrid systems. The interface between TiO2 NS and graphene oxide (oxygen atoms in epoxidic fashion) is similarly investigated.</abstract><pub>Blackwell Publishing Ltd</pub><doi>10.1002/pssb.201451089</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0370-1972
ispartof physica status solidi (b), 2014-08, Vol.251 (8), p.1471-1479
issn 0370-1972
1521-3951
language eng
recordid cdi_wiley_primary_10_1002_pssb_201451089_PSSB201451089
source Access via Wiley Online Library
subjects density functional theory
graphene
inorganic-organic hybrid materials
photocatalysis
TiO2
title DFT study of anatase-derived TiO2 nanosheets/graphene hybrid materials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T21%3A18%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_istex&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DFT%20study%20of%20anatase-derived%20TiO2%20nanosheets/graphene%20hybrid%20materials&rft.jtitle=physica%20status%20solidi%20(b)&rft.au=Masuda,%20Yasuyuki&rft.date=2014-08&rft.volume=251&rft.issue=8&rft.spage=1471&rft.epage=1479&rft.pages=1471-1479&rft.issn=0370-1972&rft.eissn=1521-3951&rft_id=info:doi/10.1002/pssb.201451089&rft_dat=%3Cwiley_istex%3EPSSB201451089%3C/wiley_istex%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true