Multi‐parametric artificial neural network fitting of phase‐cycled balanced steady‐state free precession data
Purpose Standard relaxation time quantification using phase‐cycled balanced steady‐state free precession (bSSFP), eg, motion‐insensitive rapid configuration relaxometry (MIRACLE), is subject to a considerable underestimation of tissue T1 and T2 due to asymmetric intra‐voxel frequency distributions....
Gespeichert in:
Veröffentlicht in: | Magnetic resonance in medicine 2020-12, Vol.84 (6), p.2981-2993 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2993 |
---|---|
container_issue | 6 |
container_start_page | 2981 |
container_title | Magnetic resonance in medicine |
container_volume | 84 |
creator | Heule, Rahel Bause, Jonas Pusterla, Orso Scheffler, Klaus |
description | Purpose
Standard relaxation time quantification using phase‐cycled balanced steady‐state free precession (bSSFP), eg, motion‐insensitive rapid configuration relaxometry (MIRACLE), is subject to a considerable underestimation of tissue T1 and T2 due to asymmetric intra‐voxel frequency distributions. In this work, an artificial neural network (ANN) fitting approach is proposed to simultaneously extract accurate reference relaxation times (T1, T2) and robust field map estimates (
B1+, ΔB0) from the bSSFP profile.
Methods
Whole‐brain bSSFP data acquired at 3T were used for the training of a feedforward ANN with N = 12, 6, and 4 phase‐cycles. The magnitude and phase of the Fourier transformed complex bSSFP frequency response served as input and the multi‐parametric reference set [T1, T2,
B1+, ∆B0] as target. The ANN predicted relaxation times were validated against the target and MIRACLE.
Results
The ANN prediction of T1 and T2 for trained and untrained data agreed well with the reference, even for only four acquired phase‐cycles. In contrast, relaxometry based on 4‐point MIRACLE was prone to severe off‐resonance‐related artifacts. ANN predicted
B1+ and ∆B0 maps showed the expected spatial inhomogeneity patterns in high agreement with the reference measurements for 12‐point, 6‐point, and 4‐point bSSFP phase‐cycling schemes.
Conclusion
ANNs show promise to provide accurate brain tissue T1 and T2 values as well as reliable field map estimates. Moreover, the bSSFP acquisition can be accelerated by reducing the number of phase‐cycles while still delivering robust T1, T2,
B1+, and ∆B0 estimates. |
doi_str_mv | 10.1002/mrm.28325 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_wiley_primary_10_1002_mrm_28325_MRM28325</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2441967735</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3535-73fe356f290c3468318e1ec11eea03ecfb15c03d4153caf6a529b275666aad593</originalsourceid><addsrcrecordid>eNqNkc2K1EAUhQtRnLZ14QtIgRtFMlP_SZbS-AfTCKLrUKnc0hqTVKyqMPTOR_AZfRKv0-0sBMHVvXC_czmcQ8hjzs45Y-JiStO5aKTQd8iGayEqoVt1l2xYrVgleavOyIOcrxhjbVur--RMClW3xvANyft1LOHn9x-LTXaCkoKjNpXggwt2pDOs6WaU65i-Uh9KCfNnGj1dvtgMqHMHN8JAezva2eGSC9jhgIdcbAHqEwBdEjjIOcSZDrbYh-Set2OGR6e5JZ9ev_q4e1tdvn_zbvfysnJSS13V0oPUxouWOalMI3kDHBznAJZJcL7n2jE5KK6ls95YLdpe1NoYY-2gW7klz45_lxS_rZBLN4XsYESnENfcCcWaRgjDOKJP_0Kv4ppmdIeU4q2pa_S0Jc-PlEsx5wS-W1KYbDp0nHW_m-iwie6mCWSfnD6u_QTDLfknegSaI3ANffTZBcD8bjHsSktTc65xY3wXME3MbxfXuaD0xf9Lkb440WGEw78td_sP-6P3X8nVtyI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2441967735</pqid></control><display><type>article</type><title>Multi‐parametric artificial neural network fitting of phase‐cycled balanced steady‐state free precession data</title><source>Access via Wiley Online Library</source><source>MEDLINE</source><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><creator>Heule, Rahel ; Bause, Jonas ; Pusterla, Orso ; Scheffler, Klaus</creator><creatorcontrib>Heule, Rahel ; Bause, Jonas ; Pusterla, Orso ; Scheffler, Klaus</creatorcontrib><description>Purpose
Standard relaxation time quantification using phase‐cycled balanced steady‐state free precession (bSSFP), eg, motion‐insensitive rapid configuration relaxometry (MIRACLE), is subject to a considerable underestimation of tissue T1 and T2 due to asymmetric intra‐voxel frequency distributions. In this work, an artificial neural network (ANN) fitting approach is proposed to simultaneously extract accurate reference relaxation times (T1, T2) and robust field map estimates (
B1+, ΔB0) from the bSSFP profile.
Methods
Whole‐brain bSSFP data acquired at 3T were used for the training of a feedforward ANN with N = 12, 6, and 4 phase‐cycles. The magnitude and phase of the Fourier transformed complex bSSFP frequency response served as input and the multi‐parametric reference set [T1, T2,
B1+, ∆B0] as target. The ANN predicted relaxation times were validated against the target and MIRACLE.
Results
The ANN prediction of T1 and T2 for trained and untrained data agreed well with the reference, even for only four acquired phase‐cycles. In contrast, relaxometry based on 4‐point MIRACLE was prone to severe off‐resonance‐related artifacts. ANN predicted
B1+ and ∆B0 maps showed the expected spatial inhomogeneity patterns in high agreement with the reference measurements for 12‐point, 6‐point, and 4‐point bSSFP phase‐cycling schemes.
Conclusion
ANNs show promise to provide accurate brain tissue T1 and T2 values as well as reliable field map estimates. Moreover, the bSSFP acquisition can be accelerated by reducing the number of phase‐cycles while still delivering robust T1, T2,
B1+, and ∆B0 estimates.</description><identifier>ISSN: 0740-3194</identifier><identifier>EISSN: 1522-2594</identifier><identifier>DOI: 10.1002/mrm.28325</identifier><identifier>PMID: 32479661</identifier><language>eng</language><publisher>HOBOKEN: Wiley</publisher><subject>Algorithms ; Artificial neural networks ; Brain ; Brain - diagnostic imaging ; Data acquisition ; Estimates ; Fourier transforms ; Frequency dependence ; Frequency response ; human brain tissues ; Inhomogeneity ; Life Sciences & Biomedicine ; Magnetic Resonance Imaging ; multi‐parametric mapping ; Neural networks ; Neural Networks, Computer ; Phantoms, Imaging ; Phase transitions ; phase‐cycled bSSFP ; Precession ; Radiology, Nuclear Medicine & Medical Imaging ; Relaxation time ; relaxometry ; Robustness ; Science & Technology ; Skewed distributions</subject><ispartof>Magnetic resonance in medicine, 2020-12, Vol.84 (6), p.2981-2993</ispartof><rights>2020 International Society for Magnetic Resonance in Medicine</rights><rights>2020 International Society for Magnetic Resonance in Medicine.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>7</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000536711500001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c3535-73fe356f290c3468318e1ec11eea03ecfb15c03d4153caf6a529b275666aad593</citedby><cites>FETCH-LOGICAL-c3535-73fe356f290c3468318e1ec11eea03ecfb15c03d4153caf6a529b275666aad593</cites><orcidid>0000-0001-6316-8773 ; 0000-0002-4589-6483 ; 0000-0003-1879-055X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmrm.28325$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmrm.28325$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,28253,45579,45580</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32479661$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Heule, Rahel</creatorcontrib><creatorcontrib>Bause, Jonas</creatorcontrib><creatorcontrib>Pusterla, Orso</creatorcontrib><creatorcontrib>Scheffler, Klaus</creatorcontrib><title>Multi‐parametric artificial neural network fitting of phase‐cycled balanced steady‐state free precession data</title><title>Magnetic resonance in medicine</title><addtitle>MAGN RESON MED</addtitle><addtitle>Magn Reson Med</addtitle><description>Purpose
Standard relaxation time quantification using phase‐cycled balanced steady‐state free precession (bSSFP), eg, motion‐insensitive rapid configuration relaxometry (MIRACLE), is subject to a considerable underestimation of tissue T1 and T2 due to asymmetric intra‐voxel frequency distributions. In this work, an artificial neural network (ANN) fitting approach is proposed to simultaneously extract accurate reference relaxation times (T1, T2) and robust field map estimates (
B1+, ΔB0) from the bSSFP profile.
Methods
Whole‐brain bSSFP data acquired at 3T were used for the training of a feedforward ANN with N = 12, 6, and 4 phase‐cycles. The magnitude and phase of the Fourier transformed complex bSSFP frequency response served as input and the multi‐parametric reference set [T1, T2,
B1+, ∆B0] as target. The ANN predicted relaxation times were validated against the target and MIRACLE.
Results
The ANN prediction of T1 and T2 for trained and untrained data agreed well with the reference, even for only four acquired phase‐cycles. In contrast, relaxometry based on 4‐point MIRACLE was prone to severe off‐resonance‐related artifacts. ANN predicted
B1+ and ∆B0 maps showed the expected spatial inhomogeneity patterns in high agreement with the reference measurements for 12‐point, 6‐point, and 4‐point bSSFP phase‐cycling schemes.
Conclusion
ANNs show promise to provide accurate brain tissue T1 and T2 values as well as reliable field map estimates. Moreover, the bSSFP acquisition can be accelerated by reducing the number of phase‐cycles while still delivering robust T1, T2,
B1+, and ∆B0 estimates.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Brain</subject><subject>Brain - diagnostic imaging</subject><subject>Data acquisition</subject><subject>Estimates</subject><subject>Fourier transforms</subject><subject>Frequency dependence</subject><subject>Frequency response</subject><subject>human brain tissues</subject><subject>Inhomogeneity</subject><subject>Life Sciences & Biomedicine</subject><subject>Magnetic Resonance Imaging</subject><subject>multi‐parametric mapping</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Phantoms, Imaging</subject><subject>Phase transitions</subject><subject>phase‐cycled bSSFP</subject><subject>Precession</subject><subject>Radiology, Nuclear Medicine & Medical Imaging</subject><subject>Relaxation time</subject><subject>relaxometry</subject><subject>Robustness</subject><subject>Science & Technology</subject><subject>Skewed distributions</subject><issn>0740-3194</issn><issn>1522-2594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>EIF</sourceid><recordid>eNqNkc2K1EAUhQtRnLZ14QtIgRtFMlP_SZbS-AfTCKLrUKnc0hqTVKyqMPTOR_AZfRKv0-0sBMHVvXC_czmcQ8hjzs45Y-JiStO5aKTQd8iGayEqoVt1l2xYrVgleavOyIOcrxhjbVur--RMClW3xvANyft1LOHn9x-LTXaCkoKjNpXggwt2pDOs6WaU65i-Uh9KCfNnGj1dvtgMqHMHN8JAezva2eGSC9jhgIdcbAHqEwBdEjjIOcSZDrbYh-Set2OGR6e5JZ9ev_q4e1tdvn_zbvfysnJSS13V0oPUxouWOalMI3kDHBznAJZJcL7n2jE5KK6ls95YLdpe1NoYY-2gW7klz45_lxS_rZBLN4XsYESnENfcCcWaRgjDOKJP_0Kv4ppmdIeU4q2pa_S0Jc-PlEsx5wS-W1KYbDp0nHW_m-iwie6mCWSfnD6u_QTDLfknegSaI3ANffTZBcD8bjHsSktTc65xY3wXME3MbxfXuaD0xf9Lkb440WGEw78td_sP-6P3X8nVtyI</recordid><startdate>202012</startdate><enddate>202012</enddate><creator>Heule, Rahel</creator><creator>Bause, Jonas</creator><creator>Pusterla, Orso</creator><creator>Scheffler, Klaus</creator><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>M7Z</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6316-8773</orcidid><orcidid>https://orcid.org/0000-0002-4589-6483</orcidid><orcidid>https://orcid.org/0000-0003-1879-055X</orcidid></search><sort><creationdate>202012</creationdate><title>Multi‐parametric artificial neural network fitting of phase‐cycled balanced steady‐state free precession data</title><author>Heule, Rahel ; Bause, Jonas ; Pusterla, Orso ; Scheffler, Klaus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3535-73fe356f290c3468318e1ec11eea03ecfb15c03d4153caf6a529b275666aad593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Brain</topic><topic>Brain - diagnostic imaging</topic><topic>Data acquisition</topic><topic>Estimates</topic><topic>Fourier transforms</topic><topic>Frequency dependence</topic><topic>Frequency response</topic><topic>human brain tissues</topic><topic>Inhomogeneity</topic><topic>Life Sciences & Biomedicine</topic><topic>Magnetic Resonance Imaging</topic><topic>multi‐parametric mapping</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Phantoms, Imaging</topic><topic>Phase transitions</topic><topic>phase‐cycled bSSFP</topic><topic>Precession</topic><topic>Radiology, Nuclear Medicine & Medical Imaging</topic><topic>Relaxation time</topic><topic>relaxometry</topic><topic>Robustness</topic><topic>Science & Technology</topic><topic>Skewed distributions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heule, Rahel</creatorcontrib><creatorcontrib>Bause, Jonas</creatorcontrib><creatorcontrib>Pusterla, Orso</creatorcontrib><creatorcontrib>Scheffler, Klaus</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biochemistry Abstracts 1</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Magnetic resonance in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heule, Rahel</au><au>Bause, Jonas</au><au>Pusterla, Orso</au><au>Scheffler, Klaus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi‐parametric artificial neural network fitting of phase‐cycled balanced steady‐state free precession data</atitle><jtitle>Magnetic resonance in medicine</jtitle><stitle>MAGN RESON MED</stitle><addtitle>Magn Reson Med</addtitle><date>2020-12</date><risdate>2020</risdate><volume>84</volume><issue>6</issue><spage>2981</spage><epage>2993</epage><pages>2981-2993</pages><issn>0740-3194</issn><eissn>1522-2594</eissn><abstract>Purpose
Standard relaxation time quantification using phase‐cycled balanced steady‐state free precession (bSSFP), eg, motion‐insensitive rapid configuration relaxometry (MIRACLE), is subject to a considerable underestimation of tissue T1 and T2 due to asymmetric intra‐voxel frequency distributions. In this work, an artificial neural network (ANN) fitting approach is proposed to simultaneously extract accurate reference relaxation times (T1, T2) and robust field map estimates (
B1+, ΔB0) from the bSSFP profile.
Methods
Whole‐brain bSSFP data acquired at 3T were used for the training of a feedforward ANN with N = 12, 6, and 4 phase‐cycles. The magnitude and phase of the Fourier transformed complex bSSFP frequency response served as input and the multi‐parametric reference set [T1, T2,
B1+, ∆B0] as target. The ANN predicted relaxation times were validated against the target and MIRACLE.
Results
The ANN prediction of T1 and T2 for trained and untrained data agreed well with the reference, even for only four acquired phase‐cycles. In contrast, relaxometry based on 4‐point MIRACLE was prone to severe off‐resonance‐related artifacts. ANN predicted
B1+ and ∆B0 maps showed the expected spatial inhomogeneity patterns in high agreement with the reference measurements for 12‐point, 6‐point, and 4‐point bSSFP phase‐cycling schemes.
Conclusion
ANNs show promise to provide accurate brain tissue T1 and T2 values as well as reliable field map estimates. Moreover, the bSSFP acquisition can be accelerated by reducing the number of phase‐cycles while still delivering robust T1, T2,
B1+, and ∆B0 estimates.</abstract><cop>HOBOKEN</cop><pub>Wiley</pub><pmid>32479661</pmid><doi>10.1002/mrm.28325</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-6316-8773</orcidid><orcidid>https://orcid.org/0000-0002-4589-6483</orcidid><orcidid>https://orcid.org/0000-0003-1879-055X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0740-3194 |
ispartof | Magnetic resonance in medicine, 2020-12, Vol.84 (6), p.2981-2993 |
issn | 0740-3194 1522-2594 |
language | eng |
recordid | cdi_wiley_primary_10_1002_mrm_28325_MRM28325 |
source | Access via Wiley Online Library; MEDLINE; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /> |
subjects | Algorithms Artificial neural networks Brain Brain - diagnostic imaging Data acquisition Estimates Fourier transforms Frequency dependence Frequency response human brain tissues Inhomogeneity Life Sciences & Biomedicine Magnetic Resonance Imaging multi‐parametric mapping Neural networks Neural Networks, Computer Phantoms, Imaging Phase transitions phase‐cycled bSSFP Precession Radiology, Nuclear Medicine & Medical Imaging Relaxation time relaxometry Robustness Science & Technology Skewed distributions |
title | Multi‐parametric artificial neural network fitting of phase‐cycled balanced steady‐state free precession data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T22%3A31%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi%E2%80%90parametric%20artificial%20neural%20network%20fitting%20of%20phase%E2%80%90cycled%20balanced%20steady%E2%80%90state%20free%20precession%20data&rft.jtitle=Magnetic%20resonance%20in%20medicine&rft.au=Heule,%20Rahel&rft.date=2020-12&rft.volume=84&rft.issue=6&rft.spage=2981&rft.epage=2993&rft.pages=2981-2993&rft.issn=0740-3194&rft.eissn=1522-2594&rft_id=info:doi/10.1002/mrm.28325&rft_dat=%3Cproquest_wiley%3E2441967735%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2441967735&rft_id=info:pmid/32479661&rfr_iscdi=true |