Multi‐parametric artificial neural network fitting of phase‐cycled balanced steady‐state free precession data

Purpose Standard relaxation time quantification using phase‐cycled balanced steady‐state free precession (bSSFP), eg, motion‐insensitive rapid configuration relaxometry (MIRACLE), is subject to a considerable underestimation of tissue T1 and T2 due to asymmetric intra‐voxel frequency distributions....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Magnetic resonance in medicine 2020-12, Vol.84 (6), p.2981-2993
Hauptverfasser: Heule, Rahel, Bause, Jonas, Pusterla, Orso, Scheffler, Klaus
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2993
container_issue 6
container_start_page 2981
container_title Magnetic resonance in medicine
container_volume 84
creator Heule, Rahel
Bause, Jonas
Pusterla, Orso
Scheffler, Klaus
description Purpose Standard relaxation time quantification using phase‐cycled balanced steady‐state free precession (bSSFP), eg, motion‐insensitive rapid configuration relaxometry (MIRACLE), is subject to a considerable underestimation of tissue T1 and T2 due to asymmetric intra‐voxel frequency distributions. In this work, an artificial neural network (ANN) fitting approach is proposed to simultaneously extract accurate reference relaxation times (T1, T2) and robust field map estimates ( B1+, ΔB0) from the bSSFP profile. Methods Whole‐brain bSSFP data acquired at 3T were used for the training of a feedforward ANN with N = 12, 6, and 4 phase‐cycles. The magnitude and phase of the Fourier transformed complex bSSFP frequency response served as input and the multi‐parametric reference set [T1, T2, B1+, ∆B0] as target. The ANN predicted relaxation times were validated against the target and MIRACLE. Results The ANN prediction of T1 and T2 for trained and untrained data agreed well with the reference, even for only four acquired phase‐cycles. In contrast, relaxometry based on 4‐point MIRACLE was prone to severe off‐resonance‐related artifacts. ANN predicted B1+ and ∆B0 maps showed the expected spatial inhomogeneity patterns in high agreement with the reference measurements for 12‐point, 6‐point, and 4‐point bSSFP phase‐cycling schemes. Conclusion ANNs show promise to provide accurate brain tissue T1 and T2 values as well as reliable field map estimates. Moreover, the bSSFP acquisition can be accelerated by reducing the number of phase‐cycles while still delivering robust T1, T2, B1+, and ∆B0 estimates.
doi_str_mv 10.1002/mrm.28325
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_wiley_primary_10_1002_mrm_28325_MRM28325</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2441967735</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3535-73fe356f290c3468318e1ec11eea03ecfb15c03d4153caf6a529b275666aad593</originalsourceid><addsrcrecordid>eNqNkc2K1EAUhQtRnLZ14QtIgRtFMlP_SZbS-AfTCKLrUKnc0hqTVKyqMPTOR_AZfRKv0-0sBMHVvXC_czmcQ8hjzs45Y-JiStO5aKTQd8iGayEqoVt1l2xYrVgleavOyIOcrxhjbVur--RMClW3xvANyft1LOHn9x-LTXaCkoKjNpXggwt2pDOs6WaU65i-Uh9KCfNnGj1dvtgMqHMHN8JAezva2eGSC9jhgIdcbAHqEwBdEjjIOcSZDrbYh-Set2OGR6e5JZ9ev_q4e1tdvn_zbvfysnJSS13V0oPUxouWOalMI3kDHBznAJZJcL7n2jE5KK6ls95YLdpe1NoYY-2gW7klz45_lxS_rZBLN4XsYESnENfcCcWaRgjDOKJP_0Kv4ppmdIeU4q2pa_S0Jc-PlEsx5wS-W1KYbDp0nHW_m-iwie6mCWSfnD6u_QTDLfknegSaI3ANffTZBcD8bjHsSktTc65xY3wXME3MbxfXuaD0xf9Lkb440WGEw78td_sP-6P3X8nVtyI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2441967735</pqid></control><display><type>article</type><title>Multi‐parametric artificial neural network fitting of phase‐cycled balanced steady‐state free precession data</title><source>Access via Wiley Online Library</source><source>MEDLINE</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Heule, Rahel ; Bause, Jonas ; Pusterla, Orso ; Scheffler, Klaus</creator><creatorcontrib>Heule, Rahel ; Bause, Jonas ; Pusterla, Orso ; Scheffler, Klaus</creatorcontrib><description>Purpose Standard relaxation time quantification using phase‐cycled balanced steady‐state free precession (bSSFP), eg, motion‐insensitive rapid configuration relaxometry (MIRACLE), is subject to a considerable underestimation of tissue T1 and T2 due to asymmetric intra‐voxel frequency distributions. In this work, an artificial neural network (ANN) fitting approach is proposed to simultaneously extract accurate reference relaxation times (T1, T2) and robust field map estimates ( B1+, ΔB0) from the bSSFP profile. Methods Whole‐brain bSSFP data acquired at 3T were used for the training of a feedforward ANN with N = 12, 6, and 4 phase‐cycles. The magnitude and phase of the Fourier transformed complex bSSFP frequency response served as input and the multi‐parametric reference set [T1, T2, B1+, ∆B0] as target. The ANN predicted relaxation times were validated against the target and MIRACLE. Results The ANN prediction of T1 and T2 for trained and untrained data agreed well with the reference, even for only four acquired phase‐cycles. In contrast, relaxometry based on 4‐point MIRACLE was prone to severe off‐resonance‐related artifacts. ANN predicted B1+ and ∆B0 maps showed the expected spatial inhomogeneity patterns in high agreement with the reference measurements for 12‐point, 6‐point, and 4‐point bSSFP phase‐cycling schemes. Conclusion ANNs show promise to provide accurate brain tissue T1 and T2 values as well as reliable field map estimates. Moreover, the bSSFP acquisition can be accelerated by reducing the number of phase‐cycles while still delivering robust T1, T2, B1+, and ∆B0 estimates.</description><identifier>ISSN: 0740-3194</identifier><identifier>EISSN: 1522-2594</identifier><identifier>DOI: 10.1002/mrm.28325</identifier><identifier>PMID: 32479661</identifier><language>eng</language><publisher>HOBOKEN: Wiley</publisher><subject>Algorithms ; Artificial neural networks ; Brain ; Brain - diagnostic imaging ; Data acquisition ; Estimates ; Fourier transforms ; Frequency dependence ; Frequency response ; human brain tissues ; Inhomogeneity ; Life Sciences &amp; Biomedicine ; Magnetic Resonance Imaging ; multi‐parametric mapping ; Neural networks ; Neural Networks, Computer ; Phantoms, Imaging ; Phase transitions ; phase‐cycled bSSFP ; Precession ; Radiology, Nuclear Medicine &amp; Medical Imaging ; Relaxation time ; relaxometry ; Robustness ; Science &amp; Technology ; Skewed distributions</subject><ispartof>Magnetic resonance in medicine, 2020-12, Vol.84 (6), p.2981-2993</ispartof><rights>2020 International Society for Magnetic Resonance in Medicine</rights><rights>2020 International Society for Magnetic Resonance in Medicine.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>7</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000536711500001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c3535-73fe356f290c3468318e1ec11eea03ecfb15c03d4153caf6a529b275666aad593</citedby><cites>FETCH-LOGICAL-c3535-73fe356f290c3468318e1ec11eea03ecfb15c03d4153caf6a529b275666aad593</cites><orcidid>0000-0001-6316-8773 ; 0000-0002-4589-6483 ; 0000-0003-1879-055X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmrm.28325$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmrm.28325$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,28253,45579,45580</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32479661$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Heule, Rahel</creatorcontrib><creatorcontrib>Bause, Jonas</creatorcontrib><creatorcontrib>Pusterla, Orso</creatorcontrib><creatorcontrib>Scheffler, Klaus</creatorcontrib><title>Multi‐parametric artificial neural network fitting of phase‐cycled balanced steady‐state free precession data</title><title>Magnetic resonance in medicine</title><addtitle>MAGN RESON MED</addtitle><addtitle>Magn Reson Med</addtitle><description>Purpose Standard relaxation time quantification using phase‐cycled balanced steady‐state free precession (bSSFP), eg, motion‐insensitive rapid configuration relaxometry (MIRACLE), is subject to a considerable underestimation of tissue T1 and T2 due to asymmetric intra‐voxel frequency distributions. In this work, an artificial neural network (ANN) fitting approach is proposed to simultaneously extract accurate reference relaxation times (T1, T2) and robust field map estimates ( B1+, ΔB0) from the bSSFP profile. Methods Whole‐brain bSSFP data acquired at 3T were used for the training of a feedforward ANN with N = 12, 6, and 4 phase‐cycles. The magnitude and phase of the Fourier transformed complex bSSFP frequency response served as input and the multi‐parametric reference set [T1, T2, B1+, ∆B0] as target. The ANN predicted relaxation times were validated against the target and MIRACLE. Results The ANN prediction of T1 and T2 for trained and untrained data agreed well with the reference, even for only four acquired phase‐cycles. In contrast, relaxometry based on 4‐point MIRACLE was prone to severe off‐resonance‐related artifacts. ANN predicted B1+ and ∆B0 maps showed the expected spatial inhomogeneity patterns in high agreement with the reference measurements for 12‐point, 6‐point, and 4‐point bSSFP phase‐cycling schemes. Conclusion ANNs show promise to provide accurate brain tissue T1 and T2 values as well as reliable field map estimates. Moreover, the bSSFP acquisition can be accelerated by reducing the number of phase‐cycles while still delivering robust T1, T2, B1+, and ∆B0 estimates.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Brain</subject><subject>Brain - diagnostic imaging</subject><subject>Data acquisition</subject><subject>Estimates</subject><subject>Fourier transforms</subject><subject>Frequency dependence</subject><subject>Frequency response</subject><subject>human brain tissues</subject><subject>Inhomogeneity</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Magnetic Resonance Imaging</subject><subject>multi‐parametric mapping</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Phantoms, Imaging</subject><subject>Phase transitions</subject><subject>phase‐cycled bSSFP</subject><subject>Precession</subject><subject>Radiology, Nuclear Medicine &amp; Medical Imaging</subject><subject>Relaxation time</subject><subject>relaxometry</subject><subject>Robustness</subject><subject>Science &amp; Technology</subject><subject>Skewed distributions</subject><issn>0740-3194</issn><issn>1522-2594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>EIF</sourceid><recordid>eNqNkc2K1EAUhQtRnLZ14QtIgRtFMlP_SZbS-AfTCKLrUKnc0hqTVKyqMPTOR_AZfRKv0-0sBMHVvXC_czmcQ8hjzs45Y-JiStO5aKTQd8iGayEqoVt1l2xYrVgleavOyIOcrxhjbVur--RMClW3xvANyft1LOHn9x-LTXaCkoKjNpXggwt2pDOs6WaU65i-Uh9KCfNnGj1dvtgMqHMHN8JAezva2eGSC9jhgIdcbAHqEwBdEjjIOcSZDrbYh-Set2OGR6e5JZ9ev_q4e1tdvn_zbvfysnJSS13V0oPUxouWOalMI3kDHBznAJZJcL7n2jE5KK6ls95YLdpe1NoYY-2gW7klz45_lxS_rZBLN4XsYESnENfcCcWaRgjDOKJP_0Kv4ppmdIeU4q2pa_S0Jc-PlEsx5wS-W1KYbDp0nHW_m-iwie6mCWSfnD6u_QTDLfknegSaI3ANffTZBcD8bjHsSktTc65xY3wXME3MbxfXuaD0xf9Lkb440WGEw78td_sP-6P3X8nVtyI</recordid><startdate>202012</startdate><enddate>202012</enddate><creator>Heule, Rahel</creator><creator>Bause, Jonas</creator><creator>Pusterla, Orso</creator><creator>Scheffler, Klaus</creator><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>M7Z</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6316-8773</orcidid><orcidid>https://orcid.org/0000-0002-4589-6483</orcidid><orcidid>https://orcid.org/0000-0003-1879-055X</orcidid></search><sort><creationdate>202012</creationdate><title>Multi‐parametric artificial neural network fitting of phase‐cycled balanced steady‐state free precession data</title><author>Heule, Rahel ; Bause, Jonas ; Pusterla, Orso ; Scheffler, Klaus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3535-73fe356f290c3468318e1ec11eea03ecfb15c03d4153caf6a529b275666aad593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Brain</topic><topic>Brain - diagnostic imaging</topic><topic>Data acquisition</topic><topic>Estimates</topic><topic>Fourier transforms</topic><topic>Frequency dependence</topic><topic>Frequency response</topic><topic>human brain tissues</topic><topic>Inhomogeneity</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Magnetic Resonance Imaging</topic><topic>multi‐parametric mapping</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Phantoms, Imaging</topic><topic>Phase transitions</topic><topic>phase‐cycled bSSFP</topic><topic>Precession</topic><topic>Radiology, Nuclear Medicine &amp; Medical Imaging</topic><topic>Relaxation time</topic><topic>relaxometry</topic><topic>Robustness</topic><topic>Science &amp; Technology</topic><topic>Skewed distributions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heule, Rahel</creatorcontrib><creatorcontrib>Bause, Jonas</creatorcontrib><creatorcontrib>Pusterla, Orso</creatorcontrib><creatorcontrib>Scheffler, Klaus</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biochemistry Abstracts 1</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Magnetic resonance in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heule, Rahel</au><au>Bause, Jonas</au><au>Pusterla, Orso</au><au>Scheffler, Klaus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi‐parametric artificial neural network fitting of phase‐cycled balanced steady‐state free precession data</atitle><jtitle>Magnetic resonance in medicine</jtitle><stitle>MAGN RESON MED</stitle><addtitle>Magn Reson Med</addtitle><date>2020-12</date><risdate>2020</risdate><volume>84</volume><issue>6</issue><spage>2981</spage><epage>2993</epage><pages>2981-2993</pages><issn>0740-3194</issn><eissn>1522-2594</eissn><abstract>Purpose Standard relaxation time quantification using phase‐cycled balanced steady‐state free precession (bSSFP), eg, motion‐insensitive rapid configuration relaxometry (MIRACLE), is subject to a considerable underestimation of tissue T1 and T2 due to asymmetric intra‐voxel frequency distributions. In this work, an artificial neural network (ANN) fitting approach is proposed to simultaneously extract accurate reference relaxation times (T1, T2) and robust field map estimates ( B1+, ΔB0) from the bSSFP profile. Methods Whole‐brain bSSFP data acquired at 3T were used for the training of a feedforward ANN with N = 12, 6, and 4 phase‐cycles. The magnitude and phase of the Fourier transformed complex bSSFP frequency response served as input and the multi‐parametric reference set [T1, T2, B1+, ∆B0] as target. The ANN predicted relaxation times were validated against the target and MIRACLE. Results The ANN prediction of T1 and T2 for trained and untrained data agreed well with the reference, even for only four acquired phase‐cycles. In contrast, relaxometry based on 4‐point MIRACLE was prone to severe off‐resonance‐related artifacts. ANN predicted B1+ and ∆B0 maps showed the expected spatial inhomogeneity patterns in high agreement with the reference measurements for 12‐point, 6‐point, and 4‐point bSSFP phase‐cycling schemes. Conclusion ANNs show promise to provide accurate brain tissue T1 and T2 values as well as reliable field map estimates. Moreover, the bSSFP acquisition can be accelerated by reducing the number of phase‐cycles while still delivering robust T1, T2, B1+, and ∆B0 estimates.</abstract><cop>HOBOKEN</cop><pub>Wiley</pub><pmid>32479661</pmid><doi>10.1002/mrm.28325</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-6316-8773</orcidid><orcidid>https://orcid.org/0000-0002-4589-6483</orcidid><orcidid>https://orcid.org/0000-0003-1879-055X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0740-3194
ispartof Magnetic resonance in medicine, 2020-12, Vol.84 (6), p.2981-2993
issn 0740-3194
1522-2594
language eng
recordid cdi_wiley_primary_10_1002_mrm_28325_MRM28325
source Access via Wiley Online Library; MEDLINE; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Algorithms
Artificial neural networks
Brain
Brain - diagnostic imaging
Data acquisition
Estimates
Fourier transforms
Frequency dependence
Frequency response
human brain tissues
Inhomogeneity
Life Sciences & Biomedicine
Magnetic Resonance Imaging
multi‐parametric mapping
Neural networks
Neural Networks, Computer
Phantoms, Imaging
Phase transitions
phase‐cycled bSSFP
Precession
Radiology, Nuclear Medicine & Medical Imaging
Relaxation time
relaxometry
Robustness
Science & Technology
Skewed distributions
title Multi‐parametric artificial neural network fitting of phase‐cycled balanced steady‐state free precession data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T22%3A31%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi%E2%80%90parametric%20artificial%20neural%20network%20fitting%20of%20phase%E2%80%90cycled%20balanced%20steady%E2%80%90state%20free%20precession%20data&rft.jtitle=Magnetic%20resonance%20in%20medicine&rft.au=Heule,%20Rahel&rft.date=2020-12&rft.volume=84&rft.issue=6&rft.spage=2981&rft.epage=2993&rft.pages=2981-2993&rft.issn=0740-3194&rft.eissn=1522-2594&rft_id=info:doi/10.1002/mrm.28325&rft_dat=%3Cproquest_wiley%3E2441967735%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2441967735&rft_id=info:pmid/32479661&rfr_iscdi=true