Multi‐omics analyses reveal the signatures of metabolite transfers across trophic levels in a high‐CO2 ocean

Although the diverse impacts of elevated dissolved CO2 and warming on organisms within various trophic levels in marine food webs are well documented, we have yet to explore the biological links across different levels of biological organization from primary producers to secondary producers on an ev...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Limnology and oceanography 2024-08, Vol.69 (8), p.1667-1682
Hauptverfasser: Ye, Mengcheng, Zhang, Jiale, Xiao, Mengting, Huang, Jiali, Zhou, Yunyue, Beardall, John, Raven, John A., Gao, Guang, Liang, Xiao, Wu, Fenghuang, Peng, Baoyi, Xu, Leyao, Lu, Yucong, Liang, Shiman, Wang, Yipeng, Zhang, Hao, Li, Jingyao, Cheng, Ling, Ruan, Zuoxi, Xia, Jianrong, Jin, Peng
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1682
container_issue 8
container_start_page 1667
container_title Limnology and oceanography
container_volume 69
creator Ye, Mengcheng
Zhang, Jiale
Xiao, Mengting
Huang, Jiali
Zhou, Yunyue
Beardall, John
Raven, John A.
Gao, Guang
Liang, Xiao
Wu, Fenghuang
Peng, Baoyi
Xu, Leyao
Lu, Yucong
Liang, Shiman
Wang, Yipeng
Zhang, Hao
Li, Jingyao
Cheng, Ling
Ruan, Zuoxi
Xia, Jianrong
Jin, Peng
description Although the diverse impacts of elevated dissolved CO2 and warming on organisms within various trophic levels in marine food webs are well documented, we have yet to explore the biological links across different levels of biological organization from primary producers to secondary producers on an evolutionary time scale in a high‐CO2 ocean. Here, we cultured a model marine diatom Phaeodactylum tricornutum (primary producer) in predicted future high‐CO2 and/or warming conditions for ~ 1250 d with an experimental evolution approach and then fed them to the clam Coelomactra antiquata (secondary producer). We present an in‐depth multi‐omics analysis along the methylome (primary producer)–transcriptome (primary producer)–metabolome (primary producer)–metabolome (secondary producer) continuum. Our results showed that the downregulated terpenoid backbone biosynthesis in the methylome and transcriptome lead to decreased pyruvate levels and upregulation of some pathways (such as phenylalanine metabolism) in the metabolome of the primary producer in the long‐term warming conditions. These changes in metabolomic profile in the primary producer were then transferred to the secondary producer, resulting in changes in abundance of some metabolites, such as decreases in pyruvate, and in pyruvaldhyde (also known as methylglyoxal), and increases in 2‐hydroxylamino‐4,6‐dinitrotoluene. Our study provides a new insight into the molecular mechanisms underlying the trophic transfer from primary to secondary producers in a future high‐CO2 ocean and may provide more accurate projections of marine ecosystem services and functions over the next century.
doi_str_mv 10.1002/lno.12605
format Article
fullrecord <record><control><sourceid>wiley</sourceid><recordid>TN_cdi_wiley_primary_10_1002_lno_12605_LNO12605</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>LNO12605</sourcerecordid><originalsourceid>FETCH-LOGICAL-s1955-90e5676724922f73c14c88aa974323abe4401d4253b181521880c55756e073a73</originalsourceid><addsrcrecordid>eNotkEtOAzEQRC0EEiGw4Aa-wCTt33i8RBE_KZANrEcd48kYOePInoCy4wickZNgPqsuValKrUfIJYMZA-DzMMQZ4zWoIzJhRphKKQPHZFIyWYmiT8lZzq8AYJRSE7J72IfRf318xq23meKA4ZBdpsm9OQx07B3NfjPguE_FjR3duhHXMfjR0THhkDuXSs2mmHMx4q73loZSDpn6gSLt_aYv84sVp9E6HM7JSYchu4v_OyXPN9dPi7tqubq9X1wtq8zKZ5UBp2pday4N550WlknbNIhGS8EFrp2UwF4kV2LNGqY4axqwSmlVO9ACtZiS-d_uuw_u0O6S32I6tAzaH05t4dT-cmqXj6tfIb4BqFxfEw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Multi‐omics analyses reveal the signatures of metabolite transfers across trophic levels in a high‐CO2 ocean</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Alma/SFX Local Collection</source><creator>Ye, Mengcheng ; Zhang, Jiale ; Xiao, Mengting ; Huang, Jiali ; Zhou, Yunyue ; Beardall, John ; Raven, John A. ; Gao, Guang ; Liang, Xiao ; Wu, Fenghuang ; Peng, Baoyi ; Xu, Leyao ; Lu, Yucong ; Liang, Shiman ; Wang, Yipeng ; Zhang, Hao ; Li, Jingyao ; Cheng, Ling ; Ruan, Zuoxi ; Xia, Jianrong ; Jin, Peng</creator><creatorcontrib>Ye, Mengcheng ; Zhang, Jiale ; Xiao, Mengting ; Huang, Jiali ; Zhou, Yunyue ; Beardall, John ; Raven, John A. ; Gao, Guang ; Liang, Xiao ; Wu, Fenghuang ; Peng, Baoyi ; Xu, Leyao ; Lu, Yucong ; Liang, Shiman ; Wang, Yipeng ; Zhang, Hao ; Li, Jingyao ; Cheng, Ling ; Ruan, Zuoxi ; Xia, Jianrong ; Jin, Peng</creatorcontrib><description>Although the diverse impacts of elevated dissolved CO2 and warming on organisms within various trophic levels in marine food webs are well documented, we have yet to explore the biological links across different levels of biological organization from primary producers to secondary producers on an evolutionary time scale in a high‐CO2 ocean. Here, we cultured a model marine diatom Phaeodactylum tricornutum (primary producer) in predicted future high‐CO2 and/or warming conditions for ~ 1250 d with an experimental evolution approach and then fed them to the clam Coelomactra antiquata (secondary producer). We present an in‐depth multi‐omics analysis along the methylome (primary producer)–transcriptome (primary producer)–metabolome (primary producer)–metabolome (secondary producer) continuum. Our results showed that the downregulated terpenoid backbone biosynthesis in the methylome and transcriptome lead to decreased pyruvate levels and upregulation of some pathways (such as phenylalanine metabolism) in the metabolome of the primary producer in the long‐term warming conditions. These changes in metabolomic profile in the primary producer were then transferred to the secondary producer, resulting in changes in abundance of some metabolites, such as decreases in pyruvate, and in pyruvaldhyde (also known as methylglyoxal), and increases in 2‐hydroxylamino‐4,6‐dinitrotoluene. Our study provides a new insight into the molecular mechanisms underlying the trophic transfer from primary to secondary producers in a future high‐CO2 ocean and may provide more accurate projections of marine ecosystem services and functions over the next century.</description><identifier>ISSN: 0024-3590</identifier><identifier>EISSN: 1939-5590</identifier><identifier>DOI: 10.1002/lno.12605</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><ispartof>Limnology and oceanography, 2024-08, Vol.69 (8), p.1667-1682</ispartof><rights>2024 Association for the Sciences of Limnology and Oceanography.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-7684-446X ; 0000-0002-4015-8254 ; 0000-0002-9011-9640</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Flno.12605$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Flno.12605$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Ye, Mengcheng</creatorcontrib><creatorcontrib>Zhang, Jiale</creatorcontrib><creatorcontrib>Xiao, Mengting</creatorcontrib><creatorcontrib>Huang, Jiali</creatorcontrib><creatorcontrib>Zhou, Yunyue</creatorcontrib><creatorcontrib>Beardall, John</creatorcontrib><creatorcontrib>Raven, John A.</creatorcontrib><creatorcontrib>Gao, Guang</creatorcontrib><creatorcontrib>Liang, Xiao</creatorcontrib><creatorcontrib>Wu, Fenghuang</creatorcontrib><creatorcontrib>Peng, Baoyi</creatorcontrib><creatorcontrib>Xu, Leyao</creatorcontrib><creatorcontrib>Lu, Yucong</creatorcontrib><creatorcontrib>Liang, Shiman</creatorcontrib><creatorcontrib>Wang, Yipeng</creatorcontrib><creatorcontrib>Zhang, Hao</creatorcontrib><creatorcontrib>Li, Jingyao</creatorcontrib><creatorcontrib>Cheng, Ling</creatorcontrib><creatorcontrib>Ruan, Zuoxi</creatorcontrib><creatorcontrib>Xia, Jianrong</creatorcontrib><creatorcontrib>Jin, Peng</creatorcontrib><title>Multi‐omics analyses reveal the signatures of metabolite transfers across trophic levels in a high‐CO2 ocean</title><title>Limnology and oceanography</title><description>Although the diverse impacts of elevated dissolved CO2 and warming on organisms within various trophic levels in marine food webs are well documented, we have yet to explore the biological links across different levels of biological organization from primary producers to secondary producers on an evolutionary time scale in a high‐CO2 ocean. Here, we cultured a model marine diatom Phaeodactylum tricornutum (primary producer) in predicted future high‐CO2 and/or warming conditions for ~ 1250 d with an experimental evolution approach and then fed them to the clam Coelomactra antiquata (secondary producer). We present an in‐depth multi‐omics analysis along the methylome (primary producer)–transcriptome (primary producer)–metabolome (primary producer)–metabolome (secondary producer) continuum. Our results showed that the downregulated terpenoid backbone biosynthesis in the methylome and transcriptome lead to decreased pyruvate levels and upregulation of some pathways (such as phenylalanine metabolism) in the metabolome of the primary producer in the long‐term warming conditions. These changes in metabolomic profile in the primary producer were then transferred to the secondary producer, resulting in changes in abundance of some metabolites, such as decreases in pyruvate, and in pyruvaldhyde (also known as methylglyoxal), and increases in 2‐hydroxylamino‐4,6‐dinitrotoluene. Our study provides a new insight into the molecular mechanisms underlying the trophic transfer from primary to secondary producers in a future high‐CO2 ocean and may provide more accurate projections of marine ecosystem services and functions over the next century.</description><issn>0024-3590</issn><issn>1939-5590</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNotkEtOAzEQRC0EEiGw4Aa-wCTt33i8RBE_KZANrEcd48kYOePInoCy4wickZNgPqsuValKrUfIJYMZA-DzMMQZ4zWoIzJhRphKKQPHZFIyWYmiT8lZzq8AYJRSE7J72IfRf318xq23meKA4ZBdpsm9OQx07B3NfjPguE_FjR3duhHXMfjR0THhkDuXSs2mmHMx4q73loZSDpn6gSLt_aYv84sVp9E6HM7JSYchu4v_OyXPN9dPi7tqubq9X1wtq8zKZ5UBp2pday4N550WlknbNIhGS8EFrp2UwF4kV2LNGqY4axqwSmlVO9ACtZiS-d_uuw_u0O6S32I6tAzaH05t4dT-cmqXj6tfIb4BqFxfEw</recordid><startdate>202408</startdate><enddate>202408</enddate><creator>Ye, Mengcheng</creator><creator>Zhang, Jiale</creator><creator>Xiao, Mengting</creator><creator>Huang, Jiali</creator><creator>Zhou, Yunyue</creator><creator>Beardall, John</creator><creator>Raven, John A.</creator><creator>Gao, Guang</creator><creator>Liang, Xiao</creator><creator>Wu, Fenghuang</creator><creator>Peng, Baoyi</creator><creator>Xu, Leyao</creator><creator>Lu, Yucong</creator><creator>Liang, Shiman</creator><creator>Wang, Yipeng</creator><creator>Zhang, Hao</creator><creator>Li, Jingyao</creator><creator>Cheng, Ling</creator><creator>Ruan, Zuoxi</creator><creator>Xia, Jianrong</creator><creator>Jin, Peng</creator><general>John Wiley &amp; Sons, Inc</general><scope/><orcidid>https://orcid.org/0000-0001-7684-446X</orcidid><orcidid>https://orcid.org/0000-0002-4015-8254</orcidid><orcidid>https://orcid.org/0000-0002-9011-9640</orcidid></search><sort><creationdate>202408</creationdate><title>Multi‐omics analyses reveal the signatures of metabolite transfers across trophic levels in a high‐CO2 ocean</title><author>Ye, Mengcheng ; Zhang, Jiale ; Xiao, Mengting ; Huang, Jiali ; Zhou, Yunyue ; Beardall, John ; Raven, John A. ; Gao, Guang ; Liang, Xiao ; Wu, Fenghuang ; Peng, Baoyi ; Xu, Leyao ; Lu, Yucong ; Liang, Shiman ; Wang, Yipeng ; Zhang, Hao ; Li, Jingyao ; Cheng, Ling ; Ruan, Zuoxi ; Xia, Jianrong ; Jin, Peng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-s1955-90e5676724922f73c14c88aa974323abe4401d4253b181521880c55756e073a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ye, Mengcheng</creatorcontrib><creatorcontrib>Zhang, Jiale</creatorcontrib><creatorcontrib>Xiao, Mengting</creatorcontrib><creatorcontrib>Huang, Jiali</creatorcontrib><creatorcontrib>Zhou, Yunyue</creatorcontrib><creatorcontrib>Beardall, John</creatorcontrib><creatorcontrib>Raven, John A.</creatorcontrib><creatorcontrib>Gao, Guang</creatorcontrib><creatorcontrib>Liang, Xiao</creatorcontrib><creatorcontrib>Wu, Fenghuang</creatorcontrib><creatorcontrib>Peng, Baoyi</creatorcontrib><creatorcontrib>Xu, Leyao</creatorcontrib><creatorcontrib>Lu, Yucong</creatorcontrib><creatorcontrib>Liang, Shiman</creatorcontrib><creatorcontrib>Wang, Yipeng</creatorcontrib><creatorcontrib>Zhang, Hao</creatorcontrib><creatorcontrib>Li, Jingyao</creatorcontrib><creatorcontrib>Cheng, Ling</creatorcontrib><creatorcontrib>Ruan, Zuoxi</creatorcontrib><creatorcontrib>Xia, Jianrong</creatorcontrib><creatorcontrib>Jin, Peng</creatorcontrib><jtitle>Limnology and oceanography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ye, Mengcheng</au><au>Zhang, Jiale</au><au>Xiao, Mengting</au><au>Huang, Jiali</au><au>Zhou, Yunyue</au><au>Beardall, John</au><au>Raven, John A.</au><au>Gao, Guang</au><au>Liang, Xiao</au><au>Wu, Fenghuang</au><au>Peng, Baoyi</au><au>Xu, Leyao</au><au>Lu, Yucong</au><au>Liang, Shiman</au><au>Wang, Yipeng</au><au>Zhang, Hao</au><au>Li, Jingyao</au><au>Cheng, Ling</au><au>Ruan, Zuoxi</au><au>Xia, Jianrong</au><au>Jin, Peng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi‐omics analyses reveal the signatures of metabolite transfers across trophic levels in a high‐CO2 ocean</atitle><jtitle>Limnology and oceanography</jtitle><date>2024-08</date><risdate>2024</risdate><volume>69</volume><issue>8</issue><spage>1667</spage><epage>1682</epage><pages>1667-1682</pages><issn>0024-3590</issn><eissn>1939-5590</eissn><abstract>Although the diverse impacts of elevated dissolved CO2 and warming on organisms within various trophic levels in marine food webs are well documented, we have yet to explore the biological links across different levels of biological organization from primary producers to secondary producers on an evolutionary time scale in a high‐CO2 ocean. Here, we cultured a model marine diatom Phaeodactylum tricornutum (primary producer) in predicted future high‐CO2 and/or warming conditions for ~ 1250 d with an experimental evolution approach and then fed them to the clam Coelomactra antiquata (secondary producer). We present an in‐depth multi‐omics analysis along the methylome (primary producer)–transcriptome (primary producer)–metabolome (primary producer)–metabolome (secondary producer) continuum. Our results showed that the downregulated terpenoid backbone biosynthesis in the methylome and transcriptome lead to decreased pyruvate levels and upregulation of some pathways (such as phenylalanine metabolism) in the metabolome of the primary producer in the long‐term warming conditions. These changes in metabolomic profile in the primary producer were then transferred to the secondary producer, resulting in changes in abundance of some metabolites, such as decreases in pyruvate, and in pyruvaldhyde (also known as methylglyoxal), and increases in 2‐hydroxylamino‐4,6‐dinitrotoluene. Our study provides a new insight into the molecular mechanisms underlying the trophic transfer from primary to secondary producers in a future high‐CO2 ocean and may provide more accurate projections of marine ecosystem services and functions over the next century.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/lno.12605</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-7684-446X</orcidid><orcidid>https://orcid.org/0000-0002-4015-8254</orcidid><orcidid>https://orcid.org/0000-0002-9011-9640</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0024-3590
ispartof Limnology and oceanography, 2024-08, Vol.69 (8), p.1667-1682
issn 0024-3590
1939-5590
language eng
recordid cdi_wiley_primary_10_1002_lno_12605_LNO12605
source Wiley Online Library Journals Frontfile Complete; Alma/SFX Local Collection
title Multi‐omics analyses reveal the signatures of metabolite transfers across trophic levels in a high‐CO2 ocean
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T14%3A46%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi%E2%80%90omics%20analyses%20reveal%20the%20signatures%20of%20metabolite%20transfers%20across%20trophic%20levels%20in%20a%20high%E2%80%90CO2%20ocean&rft.jtitle=Limnology%20and%20oceanography&rft.au=Ye,%20Mengcheng&rft.date=2024-08&rft.volume=69&rft.issue=8&rft.spage=1667&rft.epage=1682&rft.pages=1667-1682&rft.issn=0024-3590&rft.eissn=1939-5590&rft_id=info:doi/10.1002/lno.12605&rft_dat=%3Cwiley%3ELNO12605%3C/wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true