Raman scattering of true 1D van der Waals Nb2Se9 nanowires

In the present study, the experimental Raman spectrum of niobium‐selenide nanowires (Nb2Se9) is reported for the first time followed by an analysis of the Raman spectrum using the density functional theory (DFT). According to the group‐theoretical analysis, 33 Ag modes were identified as Raman activ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Raman spectroscopy 2020-07, Vol.51 (7), p.1100-1107
Hauptverfasser: Lee, Junho, Kim, Bum Jun, Chung, You Kyoung, Lee, Weon‐Gyu, Choi, Ik Jun, Chae, Sudong, Oh, Seungbae, Kim, Ji Man, Choi, Jae‐Young, Huh, Joonsuk
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1107
container_issue 7
container_start_page 1100
container_title Journal of Raman spectroscopy
container_volume 51
creator Lee, Junho
Kim, Bum Jun
Chung, You Kyoung
Lee, Weon‐Gyu
Choi, Ik Jun
Chae, Sudong
Oh, Seungbae
Kim, Ji Man
Choi, Jae‐Young
Huh, Joonsuk
description In the present study, the experimental Raman spectrum of niobium‐selenide nanowires (Nb2Se9) is reported for the first time followed by an analysis of the Raman spectrum using the density functional theory (DFT). According to the group‐theoretical analysis, 33 Ag modes were identified as Raman active modes. In the experimental spectrum, 19 well‐resolved Raman modes were observed: 13 modes in the low‐wavenumber range (50–200 cm−1) and six modes in the high‐wavenumber range (220–340 cm−1). The DFT calculations were performed using the local‐density approximation (LDA) functional and generalized gradient approximation (GGA) functional of Perdew–Burke–Ernzerhof (PBE) with van der Waals corrections (PBE‐D3). PBE‐D3 showed better compatibility with the experimental data for the high‐wavenumber range. Our results provide an essential reference for the Raman scattering of newly synthesized Nb2Se9 nanowires and nanodevices in the future. The true one‐dimensional van der Waals material, Nb2Se9 nanowire, was synthesized successfully. We measured the Raman spectra on Nb2Se9 and assigned with simulated Spectra with DFT. This will give useful reference for the studies of lattice dynamics of Nb2Se9 nanowires and one‐dimensional nanomaterials.
doi_str_mv 10.1002/jrs.5892
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_wiley_primary_10_1002_jrs_5892_JRS5892</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2423110078</sourcerecordid><originalsourceid>FETCH-LOGICAL-g2582-90860581f2bbd1123898793bcbcf4d6dbab0370cb72a875148b7bf4e989f30b53</originalsourceid><addsrcrecordid>eNqNUF1LwzAUDaLgnII_IeCjdN6kTZP4JvWbobApPoakTUfHls6kdezfm7Lhs0_ncu85995zELokMCEA9Gbpw4QJSY_QiIDkScYYO0YjSDlPIBP5KToLYQkAUuZkhG5neq0dDqXuOusbt8BtjTvfW0zu8U-cVNbjL61XAb8ZOrcSO-3abeNtOEcndezbiwOO0efjw0fxnEzfn16Ku2myoEzQRILIgQlSU2MqQmgqpOAyNaUp66zKK6NNfA5Kw6kWnJFMGG7qzEoh6xQMS8foar9349vv3oZOLdveu3hS0YymJNrmIrKu96ytNW0dysa60qqNb9ba71T0y6gUROaxAhLZ4v_soul017SuaHvXRWlykDYru_vTEFBD_irmr4b81etsPmD6C7T4dSk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2423110078</pqid></control><display><type>article</type><title>Raman scattering of true 1D van der Waals Nb2Se9 nanowires</title><source>Access via Wiley Online Library</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Lee, Junho ; Kim, Bum Jun ; Chung, You Kyoung ; Lee, Weon‐Gyu ; Choi, Ik Jun ; Chae, Sudong ; Oh, Seungbae ; Kim, Ji Man ; Choi, Jae‐Young ; Huh, Joonsuk</creator><creatorcontrib>Lee, Junho ; Kim, Bum Jun ; Chung, You Kyoung ; Lee, Weon‐Gyu ; Choi, Ik Jun ; Chae, Sudong ; Oh, Seungbae ; Kim, Ji Man ; Choi, Jae‐Young ; Huh, Joonsuk</creatorcontrib><description>In the present study, the experimental Raman spectrum of niobium‐selenide nanowires (Nb2Se9) is reported for the first time followed by an analysis of the Raman spectrum using the density functional theory (DFT). According to the group‐theoretical analysis, 33 Ag modes were identified as Raman active modes. In the experimental spectrum, 19 well‐resolved Raman modes were observed: 13 modes in the low‐wavenumber range (50–200 cm−1) and six modes in the high‐wavenumber range (220–340 cm−1). The DFT calculations were performed using the local‐density approximation (LDA) functional and generalized gradient approximation (GGA) functional of Perdew–Burke–Ernzerhof (PBE) with van der Waals corrections (PBE‐D3). PBE‐D3 showed better compatibility with the experimental data for the high‐wavenumber range. Our results provide an essential reference for the Raman scattering of newly synthesized Nb2Se9 nanowires and nanodevices in the future. The true one‐dimensional van der Waals material, Nb2Se9 nanowire, was synthesized successfully. We measured the Raman spectra on Nb2Se9 and assigned with simulated Spectra with DFT. This will give useful reference for the studies of lattice dynamics of Nb2Se9 nanowires and one‐dimensional nanomaterials.</description><identifier>ISSN: 0377-0486</identifier><identifier>EISSN: 1097-4555</identifier><identifier>DOI: 10.1002/jrs.5892</identifier><language>eng</language><publisher>HOBOKEN: Wiley</publisher><subject>1D vdW materials ; Approximation ; Density functional theory ; density‐functional perturbation theory ; Mathematical analysis ; Nanotechnology ; Nanotechnology devices ; Nanowires ; Nb2Se9 ; Niobium ; phonon modes ; Raman spectra ; Raman spectroscopy ; Science &amp; Technology ; Selenide ; Spectroscopy ; Technology ; Theoretical analysis ; Wavelengths</subject><ispartof>Journal of Raman spectroscopy, 2020-07, Vol.51 (7), p.1100-1107</ispartof><rights>2020 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>6</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000529819600001</woscitedreferencesoriginalsourcerecordid><cites>FETCH-LOGICAL-g2582-90860581f2bbd1123898793bcbcf4d6dbab0370cb72a875148b7bf4e989f30b53</cites><orcidid>0000-0002-8792-5641 ; 0000-0003-0860-4880</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjrs.5892$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjrs.5892$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,28253,45579,45580</link.rule.ids></links><search><creatorcontrib>Lee, Junho</creatorcontrib><creatorcontrib>Kim, Bum Jun</creatorcontrib><creatorcontrib>Chung, You Kyoung</creatorcontrib><creatorcontrib>Lee, Weon‐Gyu</creatorcontrib><creatorcontrib>Choi, Ik Jun</creatorcontrib><creatorcontrib>Chae, Sudong</creatorcontrib><creatorcontrib>Oh, Seungbae</creatorcontrib><creatorcontrib>Kim, Ji Man</creatorcontrib><creatorcontrib>Choi, Jae‐Young</creatorcontrib><creatorcontrib>Huh, Joonsuk</creatorcontrib><title>Raman scattering of true 1D van der Waals Nb2Se9 nanowires</title><title>Journal of Raman spectroscopy</title><addtitle>J RAMAN SPECTROSC</addtitle><description>In the present study, the experimental Raman spectrum of niobium‐selenide nanowires (Nb2Se9) is reported for the first time followed by an analysis of the Raman spectrum using the density functional theory (DFT). According to the group‐theoretical analysis, 33 Ag modes were identified as Raman active modes. In the experimental spectrum, 19 well‐resolved Raman modes were observed: 13 modes in the low‐wavenumber range (50–200 cm−1) and six modes in the high‐wavenumber range (220–340 cm−1). The DFT calculations were performed using the local‐density approximation (LDA) functional and generalized gradient approximation (GGA) functional of Perdew–Burke–Ernzerhof (PBE) with van der Waals corrections (PBE‐D3). PBE‐D3 showed better compatibility with the experimental data for the high‐wavenumber range. Our results provide an essential reference for the Raman scattering of newly synthesized Nb2Se9 nanowires and nanodevices in the future. The true one‐dimensional van der Waals material, Nb2Se9 nanowire, was synthesized successfully. We measured the Raman spectra on Nb2Se9 and assigned with simulated Spectra with DFT. This will give useful reference for the studies of lattice dynamics of Nb2Se9 nanowires and one‐dimensional nanomaterials.</description><subject>1D vdW materials</subject><subject>Approximation</subject><subject>Density functional theory</subject><subject>density‐functional perturbation theory</subject><subject>Mathematical analysis</subject><subject>Nanotechnology</subject><subject>Nanotechnology devices</subject><subject>Nanowires</subject><subject>Nb2Se9</subject><subject>Niobium</subject><subject>phonon modes</subject><subject>Raman spectra</subject><subject>Raman spectroscopy</subject><subject>Science &amp; Technology</subject><subject>Selenide</subject><subject>Spectroscopy</subject><subject>Technology</subject><subject>Theoretical analysis</subject><subject>Wavelengths</subject><issn>0377-0486</issn><issn>1097-4555</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNUF1LwzAUDaLgnII_IeCjdN6kTZP4JvWbobApPoakTUfHls6kdezfm7Lhs0_ncu85995zELokMCEA9Gbpw4QJSY_QiIDkScYYO0YjSDlPIBP5KToLYQkAUuZkhG5neq0dDqXuOusbt8BtjTvfW0zu8U-cVNbjL61XAb8ZOrcSO-3abeNtOEcndezbiwOO0efjw0fxnEzfn16Ku2myoEzQRILIgQlSU2MqQmgqpOAyNaUp66zKK6NNfA5Kw6kWnJFMGG7qzEoh6xQMS8foar9349vv3oZOLdveu3hS0YymJNrmIrKu96ytNW0dysa60qqNb9ba71T0y6gUROaxAhLZ4v_soul017SuaHvXRWlykDYru_vTEFBD_irmr4b81etsPmD6C7T4dSk</recordid><startdate>202007</startdate><enddate>202007</enddate><creator>Lee, Junho</creator><creator>Kim, Bum Jun</creator><creator>Chung, You Kyoung</creator><creator>Lee, Weon‐Gyu</creator><creator>Choi, Ik Jun</creator><creator>Chae, Sudong</creator><creator>Oh, Seungbae</creator><creator>Kim, Ji Man</creator><creator>Choi, Jae‐Young</creator><creator>Huh, Joonsuk</creator><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0002-8792-5641</orcidid><orcidid>https://orcid.org/0000-0003-0860-4880</orcidid></search><sort><creationdate>202007</creationdate><title>Raman scattering of true 1D van der Waals Nb2Se9 nanowires</title><author>Lee, Junho ; Kim, Bum Jun ; Chung, You Kyoung ; Lee, Weon‐Gyu ; Choi, Ik Jun ; Chae, Sudong ; Oh, Seungbae ; Kim, Ji Man ; Choi, Jae‐Young ; Huh, Joonsuk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g2582-90860581f2bbd1123898793bcbcf4d6dbab0370cb72a875148b7bf4e989f30b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>1D vdW materials</topic><topic>Approximation</topic><topic>Density functional theory</topic><topic>density‐functional perturbation theory</topic><topic>Mathematical analysis</topic><topic>Nanotechnology</topic><topic>Nanotechnology devices</topic><topic>Nanowires</topic><topic>Nb2Se9</topic><topic>Niobium</topic><topic>phonon modes</topic><topic>Raman spectra</topic><topic>Raman spectroscopy</topic><topic>Science &amp; Technology</topic><topic>Selenide</topic><topic>Spectroscopy</topic><topic>Technology</topic><topic>Theoretical analysis</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Junho</creatorcontrib><creatorcontrib>Kim, Bum Jun</creatorcontrib><creatorcontrib>Chung, You Kyoung</creatorcontrib><creatorcontrib>Lee, Weon‐Gyu</creatorcontrib><creatorcontrib>Choi, Ik Jun</creatorcontrib><creatorcontrib>Chae, Sudong</creatorcontrib><creatorcontrib>Oh, Seungbae</creatorcontrib><creatorcontrib>Kim, Ji Man</creatorcontrib><creatorcontrib>Choi, Jae‐Young</creatorcontrib><creatorcontrib>Huh, Joonsuk</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Journal of Raman spectroscopy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Junho</au><au>Kim, Bum Jun</au><au>Chung, You Kyoung</au><au>Lee, Weon‐Gyu</au><au>Choi, Ik Jun</au><au>Chae, Sudong</au><au>Oh, Seungbae</au><au>Kim, Ji Man</au><au>Choi, Jae‐Young</au><au>Huh, Joonsuk</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Raman scattering of true 1D van der Waals Nb2Se9 nanowires</atitle><jtitle>Journal of Raman spectroscopy</jtitle><stitle>J RAMAN SPECTROSC</stitle><date>2020-07</date><risdate>2020</risdate><volume>51</volume><issue>7</issue><spage>1100</spage><epage>1107</epage><pages>1100-1107</pages><issn>0377-0486</issn><eissn>1097-4555</eissn><abstract>In the present study, the experimental Raman spectrum of niobium‐selenide nanowires (Nb2Se9) is reported for the first time followed by an analysis of the Raman spectrum using the density functional theory (DFT). According to the group‐theoretical analysis, 33 Ag modes were identified as Raman active modes. In the experimental spectrum, 19 well‐resolved Raman modes were observed: 13 modes in the low‐wavenumber range (50–200 cm−1) and six modes in the high‐wavenumber range (220–340 cm−1). The DFT calculations were performed using the local‐density approximation (LDA) functional and generalized gradient approximation (GGA) functional of Perdew–Burke–Ernzerhof (PBE) with van der Waals corrections (PBE‐D3). PBE‐D3 showed better compatibility with the experimental data for the high‐wavenumber range. Our results provide an essential reference for the Raman scattering of newly synthesized Nb2Se9 nanowires and nanodevices in the future. The true one‐dimensional van der Waals material, Nb2Se9 nanowire, was synthesized successfully. We measured the Raman spectra on Nb2Se9 and assigned with simulated Spectra with DFT. This will give useful reference for the studies of lattice dynamics of Nb2Se9 nanowires and one‐dimensional nanomaterials.</abstract><cop>HOBOKEN</cop><pub>Wiley</pub><doi>10.1002/jrs.5892</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-8792-5641</orcidid><orcidid>https://orcid.org/0000-0003-0860-4880</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0377-0486
ispartof Journal of Raman spectroscopy, 2020-07, Vol.51 (7), p.1100-1107
issn 0377-0486
1097-4555
language eng
recordid cdi_wiley_primary_10_1002_jrs_5892_JRS5892
source Access via Wiley Online Library; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects 1D vdW materials
Approximation
Density functional theory
density‐functional perturbation theory
Mathematical analysis
Nanotechnology
Nanotechnology devices
Nanowires
Nb2Se9
Niobium
phonon modes
Raman spectra
Raman spectroscopy
Science & Technology
Selenide
Spectroscopy
Technology
Theoretical analysis
Wavelengths
title Raman scattering of true 1D van der Waals Nb2Se9 nanowires
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T22%3A55%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Raman%20scattering%20of%20true%201D%20van%20der%20Waals%20Nb2Se9%20nanowires&rft.jtitle=Journal%20of%20Raman%20spectroscopy&rft.au=Lee,%20Junho&rft.date=2020-07&rft.volume=51&rft.issue=7&rft.spage=1100&rft.epage=1107&rft.pages=1100-1107&rft.issn=0377-0486&rft.eissn=1097-4555&rft_id=info:doi/10.1002/jrs.5892&rft_dat=%3Cproquest_wiley%3E2423110078%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2423110078&rft_id=info:pmid/&rfr_iscdi=true