The value of the Ramsey number r(3, 8)
The Ramsey number R(3, 8) can be defined as the least number n such that every graph on n vertices contains either a triangle or an independent set of size 8. With the help of a substantial amount of computation, we prove that R(3, 8)=28.
Gespeichert in:
Veröffentlicht in: | Journal of graph theory 1992-03, Vol.16 (1), p.99-105 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The Ramsey number R(3, 8) can be defined as the least number n such that every graph on n vertices contains either a triangle or an independent set of size 8. With the help of a substantial amount of computation, we prove that R(3, 8)=28. |
---|---|
ISSN: | 0364-9024 1097-0118 |
DOI: | 10.1002/jgt.3190160111 |