Post-combustion CO2 capture: chemical absorption processes in coal-fired steam power plants
The integration of a post‐combustion CO2 capture unit in a coal‐fired steam power plant leads to a reduction in net power output, where the largest contributors to the power loss are the heat requirement for the regeneration of the chemical solvent in the desorber of the CO2 capture unit (approx. 2/...
Gespeichert in:
Veröffentlicht in: | Greenhouse gases: science and technology 2012-04, Vol.2 (2), p.80-98 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 98 |
---|---|
container_issue | 2 |
container_start_page | 80 |
container_title | Greenhouse gases: science and technology |
container_volume | 2 |
creator | Oexmann, Jochen Kather, Alfons Linnenberg, Sebastian Liebenthal, Ulrich |
description | The integration of a post‐combustion CO2 capture unit in a coal‐fired steam power plant leads to a reduction in net power output, where the largest contributors to the power loss are the heat requirement for the regeneration of the chemical solvent in the desorber of the CO2 capture unit (approx. 2/3) and the auxiliary power demand of the CO2 compressor (approx. 1/4). In this review, the layout of the overall process is explained and the interaction of the three sub‐processes power plant, CO2 capture process and CO2 compressor is discussed. The optimization of process parameters of the CO2 capture unit – such as solution flow rate and reboiler temperature – is intricate due to the complex interaction of the sub‐processes. It is shown that although the heat requirement for solvent regeneration has the largest impact on the power output of the overall process, the optimal process parameters that lead to the lowest possible heat requirement of the capture unit do not necessarily coincide with the optimal process parameters that make for the most energy efficient operation of the overall process. Therefore, when optimizing process parameters of CO2 absorption processes in power plants, one should focus on the minimization of the overall power loss instead of solely reducing the heat requirement for solvent regeneration. The described coherences are illustrated by the results of process simulations based on detailed models of a post‐combustion CO2 capture unit using 7 m (30 wt.‐%) monoethanolamine (MEA), of a supercritical, hard‐coal‐fired steam power plant and of a six‐stage, intercooled CO2 compressor. © 2012 Society of Chemical Industry and John Wiley & Sons, Ltd |
doi_str_mv | 10.1002/ghg.1273 |
format | Article |
fullrecord | <record><control><sourceid>wiley_istex</sourceid><recordid>TN_cdi_wiley_primary_10_1002_ghg_1273_GHG1273</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>GHG1273</sourcerecordid><originalsourceid>FETCH-LOGICAL-i2973-4d6a548c5e372f2f4b989f2a1c495ba8c9072832c4b17befd5c6051157b455823</originalsourceid><addsrcrecordid>eNpNkM1KAzEUhYMoWGrBR8gLpOa3mXEnRadqaQWVgi5Ckmba6EwzJFNq396Oino35y4-DocPgHOChwRjerFar4aESnYEepQIilgms-N__ykYpPSGD8cxlVj2wOtDSC2yoTbb1PqwgeM5hVY37Ta6S2jXrvZWV1CbFGLzBTQxWJeSS9BvoA26QqWPbglT63QNm7BzETaV3rTpDJyUukpu8JN98Hxz_TSeoOm8uB1fTZGnuWSIL0da8MwKxyQtaclNnuUl1cTyXBid2RxLmjFquSHSuHIp7AgLQoQ0XIiMsj5A3707X7m9aqKvddwrglUnRR2kqE6KKiZFl3-8P2z--OV1fFcjyaRQi1mhFng2ebm7f1Q5-wT3xGW7</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Post-combustion CO2 capture: chemical absorption processes in coal-fired steam power plants</title><source>Access via Wiley Online Library</source><creator>Oexmann, Jochen ; Kather, Alfons ; Linnenberg, Sebastian ; Liebenthal, Ulrich</creator><creatorcontrib>Oexmann, Jochen ; Kather, Alfons ; Linnenberg, Sebastian ; Liebenthal, Ulrich</creatorcontrib><description>The integration of a post‐combustion CO2 capture unit in a coal‐fired steam power plant leads to a reduction in net power output, where the largest contributors to the power loss are the heat requirement for the regeneration of the chemical solvent in the desorber of the CO2 capture unit (approx. 2/3) and the auxiliary power demand of the CO2 compressor (approx. 1/4). In this review, the layout of the overall process is explained and the interaction of the three sub‐processes power plant, CO2 capture process and CO2 compressor is discussed. The optimization of process parameters of the CO2 capture unit – such as solution flow rate and reboiler temperature – is intricate due to the complex interaction of the sub‐processes. It is shown that although the heat requirement for solvent regeneration has the largest impact on the power output of the overall process, the optimal process parameters that lead to the lowest possible heat requirement of the capture unit do not necessarily coincide with the optimal process parameters that make for the most energy efficient operation of the overall process. Therefore, when optimizing process parameters of CO2 absorption processes in power plants, one should focus on the minimization of the overall power loss instead of solely reducing the heat requirement for solvent regeneration. The described coherences are illustrated by the results of process simulations based on detailed models of a post‐combustion CO2 capture unit using 7 m (30 wt.‐%) monoethanolamine (MEA), of a supercritical, hard‐coal‐fired steam power plant and of a six‐stage, intercooled CO2 compressor. © 2012 Society of Chemical Industry and John Wiley & Sons, Ltd</description><identifier>ISSN: 2152-3878</identifier><identifier>EISSN: 2152-3878</identifier><identifier>DOI: 10.1002/ghg.1273</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>chemical solvents ; integration ; optimization ; overall process ; post-combustion CO2 capture ; steam power plants</subject><ispartof>Greenhouse gases: science and technology, 2012-04, Vol.2 (2), p.80-98</ispartof><rights>Copyright © 2012 Society of Chemical Industry and John Wiley & Sons, Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fghg.1273$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fghg.1273$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,45579,45580</link.rule.ids></links><search><creatorcontrib>Oexmann, Jochen</creatorcontrib><creatorcontrib>Kather, Alfons</creatorcontrib><creatorcontrib>Linnenberg, Sebastian</creatorcontrib><creatorcontrib>Liebenthal, Ulrich</creatorcontrib><title>Post-combustion CO2 capture: chemical absorption processes in coal-fired steam power plants</title><title>Greenhouse gases: science and technology</title><addtitle>Greenhouse Gas Sci Technol</addtitle><description>The integration of a post‐combustion CO2 capture unit in a coal‐fired steam power plant leads to a reduction in net power output, where the largest contributors to the power loss are the heat requirement for the regeneration of the chemical solvent in the desorber of the CO2 capture unit (approx. 2/3) and the auxiliary power demand of the CO2 compressor (approx. 1/4). In this review, the layout of the overall process is explained and the interaction of the three sub‐processes power plant, CO2 capture process and CO2 compressor is discussed. The optimization of process parameters of the CO2 capture unit – such as solution flow rate and reboiler temperature – is intricate due to the complex interaction of the sub‐processes. It is shown that although the heat requirement for solvent regeneration has the largest impact on the power output of the overall process, the optimal process parameters that lead to the lowest possible heat requirement of the capture unit do not necessarily coincide with the optimal process parameters that make for the most energy efficient operation of the overall process. Therefore, when optimizing process parameters of CO2 absorption processes in power plants, one should focus on the minimization of the overall power loss instead of solely reducing the heat requirement for solvent regeneration. The described coherences are illustrated by the results of process simulations based on detailed models of a post‐combustion CO2 capture unit using 7 m (30 wt.‐%) monoethanolamine (MEA), of a supercritical, hard‐coal‐fired steam power plant and of a six‐stage, intercooled CO2 compressor. © 2012 Society of Chemical Industry and John Wiley & Sons, Ltd</description><subject>chemical solvents</subject><subject>integration</subject><subject>optimization</subject><subject>overall process</subject><subject>post-combustion CO2 capture</subject><subject>steam power plants</subject><issn>2152-3878</issn><issn>2152-3878</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNpNkM1KAzEUhYMoWGrBR8gLpOa3mXEnRadqaQWVgi5Ckmba6EwzJFNq396Oino35y4-DocPgHOChwRjerFar4aESnYEepQIilgms-N__ykYpPSGD8cxlVj2wOtDSC2yoTbb1PqwgeM5hVY37Ta6S2jXrvZWV1CbFGLzBTQxWJeSS9BvoA26QqWPbglT63QNm7BzETaV3rTpDJyUukpu8JN98Hxz_TSeoOm8uB1fTZGnuWSIL0da8MwKxyQtaclNnuUl1cTyXBid2RxLmjFquSHSuHIp7AgLQoQ0XIiMsj5A3707X7m9aqKvddwrglUnRR2kqE6KKiZFl3-8P2z--OV1fFcjyaRQi1mhFng2ebm7f1Q5-wT3xGW7</recordid><startdate>201204</startdate><enddate>201204</enddate><creator>Oexmann, Jochen</creator><creator>Kather, Alfons</creator><creator>Linnenberg, Sebastian</creator><creator>Liebenthal, Ulrich</creator><general>John Wiley & Sons, Ltd</general><scope>BSCLL</scope></search><sort><creationdate>201204</creationdate><title>Post-combustion CO2 capture: chemical absorption processes in coal-fired steam power plants</title><author>Oexmann, Jochen ; Kather, Alfons ; Linnenberg, Sebastian ; Liebenthal, Ulrich</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i2973-4d6a548c5e372f2f4b989f2a1c495ba8c9072832c4b17befd5c6051157b455823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>chemical solvents</topic><topic>integration</topic><topic>optimization</topic><topic>overall process</topic><topic>post-combustion CO2 capture</topic><topic>steam power plants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oexmann, Jochen</creatorcontrib><creatorcontrib>Kather, Alfons</creatorcontrib><creatorcontrib>Linnenberg, Sebastian</creatorcontrib><creatorcontrib>Liebenthal, Ulrich</creatorcontrib><collection>Istex</collection><jtitle>Greenhouse gases: science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oexmann, Jochen</au><au>Kather, Alfons</au><au>Linnenberg, Sebastian</au><au>Liebenthal, Ulrich</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Post-combustion CO2 capture: chemical absorption processes in coal-fired steam power plants</atitle><jtitle>Greenhouse gases: science and technology</jtitle><addtitle>Greenhouse Gas Sci Technol</addtitle><date>2012-04</date><risdate>2012</risdate><volume>2</volume><issue>2</issue><spage>80</spage><epage>98</epage><pages>80-98</pages><issn>2152-3878</issn><eissn>2152-3878</eissn><abstract>The integration of a post‐combustion CO2 capture unit in a coal‐fired steam power plant leads to a reduction in net power output, where the largest contributors to the power loss are the heat requirement for the regeneration of the chemical solvent in the desorber of the CO2 capture unit (approx. 2/3) and the auxiliary power demand of the CO2 compressor (approx. 1/4). In this review, the layout of the overall process is explained and the interaction of the three sub‐processes power plant, CO2 capture process and CO2 compressor is discussed. The optimization of process parameters of the CO2 capture unit – such as solution flow rate and reboiler temperature – is intricate due to the complex interaction of the sub‐processes. It is shown that although the heat requirement for solvent regeneration has the largest impact on the power output of the overall process, the optimal process parameters that lead to the lowest possible heat requirement of the capture unit do not necessarily coincide with the optimal process parameters that make for the most energy efficient operation of the overall process. Therefore, when optimizing process parameters of CO2 absorption processes in power plants, one should focus on the minimization of the overall power loss instead of solely reducing the heat requirement for solvent regeneration. The described coherences are illustrated by the results of process simulations based on detailed models of a post‐combustion CO2 capture unit using 7 m (30 wt.‐%) monoethanolamine (MEA), of a supercritical, hard‐coal‐fired steam power plant and of a six‐stage, intercooled CO2 compressor. © 2012 Society of Chemical Industry and John Wiley & Sons, Ltd</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/ghg.1273</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2152-3878 |
ispartof | Greenhouse gases: science and technology, 2012-04, Vol.2 (2), p.80-98 |
issn | 2152-3878 2152-3878 |
language | eng |
recordid | cdi_wiley_primary_10_1002_ghg_1273_GHG1273 |
source | Access via Wiley Online Library |
subjects | chemical solvents integration optimization overall process post-combustion CO2 capture steam power plants |
title | Post-combustion CO2 capture: chemical absorption processes in coal-fired steam power plants |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T12%3A36%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_istex&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Post-combustion%20CO2%20capture:%20chemical%20absorption%20processes%20in%20coal-fired%20steam%20power%20plants&rft.jtitle=Greenhouse%20gases:%20science%20and%20technology&rft.au=Oexmann,%20Jochen&rft.date=2012-04&rft.volume=2&rft.issue=2&rft.spage=80&rft.epage=98&rft.pages=80-98&rft.issn=2152-3878&rft.eissn=2152-3878&rft_id=info:doi/10.1002/ghg.1273&rft_dat=%3Cwiley_istex%3EGHG1273%3C/wiley_istex%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |