Identifying and correcting spatial bias in opportunistic citizen science data for wild ungulates in Norway
Many publications make use of opportunistic data, such as citizen science observation data, to infer large‐scale properties of species’ distributions. However, the few publications that use opportunistic citizen science data to study animal ecology at a habitat level do so without accounting for spa...
Gespeichert in:
Veröffentlicht in: | Ecology and evolution 2021-11, Vol.11 (21), p.15191-15204 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15204 |
---|---|
container_issue | 21 |
container_start_page | 15191 |
container_title | Ecology and evolution |
container_volume | 11 |
creator | Cretois, Benjamin Simmonds, Emily G. Linnell, John D. C. Moorter, Bram Rolandsen, Christer M. Solberg, Erling J. Strand, Olav Gundersen, Vegard Roer, Ole Rød, Jan Ketil |
description | Many publications make use of opportunistic data, such as citizen science observation data, to infer large‐scale properties of species’ distributions. However, the few publications that use opportunistic citizen science data to study animal ecology at a habitat level do so without accounting for spatial biases in opportunistic records or using methods that are difficult to generalize. In this study, we explore the biases that exist in opportunistic observations and suggest an approach to correct for them. We first examined the extent of the biases in opportunistic citizen science observations of three wild ungulate species in Norway by comparing them to data from GPS telemetry. We then quantified the extent of the biases by specifying a model of the biases. From the bias model, we sampled available locations within the species’ home range. Along with opportunistic observations, we used the corrected availability locations to estimate a resource selection function (RSF). We tested this method with simulations and empirical datasets for the three species. We compared the results of our correction method to RSFs obtained using opportunistic observations without correction and to RSFs using GPS‐telemetry data. Finally, we compared habitat suitability maps obtained using each of these models. Opportunistic observations are more affected by human access and visibility than locations derived from GPS telemetry. This has consequences for drawing inferences about species’ ecology. Models naïvely using opportunistic observations in habitat‐use studies can result in spurious inferences. However, sampling availability locations based on the spatial biases in opportunistic data improves the estimation of the species’ RSFs and predicted habitat suitability maps in some cases. This study highlights the challenges and opportunities of using opportunistic observations in habitat‐use studies. While our method is not foolproof it is a first step toward unlocking the potential of opportunistic citizen science data for habitat‐use studies.
We provide a novel method to use citizen science data for fine‐scale studies. |
doi_str_mv | 10.1002/ece3.8200 |
format | Article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_wiley_primary_10_1002_ece3_8200_ECE38200</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_5d3ec5517a8c46a885097ea1d081f610</doaj_id><sourcerecordid>2597486011</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5090-da145e622f6aa2ab4195b38e9bd94b59d2be52f1fff3e79f73f5da608e2bf5693</originalsourceid><addsrcrecordid>eNp1kk1vEzEQQFcIRKvSA38AWeICh7S2d732XpBQFCBSBRc4W7P2ODja2MHebRV-Pd6kVC0Svvjr-Wk8M1X1mtErRim_RoP1leKUPqvOOW3EQkqhnj9an1WXOW9pGS3lDZUvq7O6ka1gkp5X27XFMHp38GFDIFhiYkpoxnmb9zB6GEjvIRMfSNzvYxqn4PPoDTF-9L8xkGw8BoPEwgjExUTu_GDJFDbTACMeH36N6Q4Or6oXDoaMl_fzRfXj0-r78svi5tvn9fLjzcII2tGFBdYIbDl3LQCHvmGd6GuFXW-7phed5T0K7phzrkbZOVk7YaGlCnnvRNvVF9X65LURtnqf_A7SQUfw-ngQ00ZDKj8YUAtboxElE6BM04JSJQKJwCxVzLWMFteHk2s_9Tu0puQqwfBE-vQm-J96E2-1EpKVdBfBu3tBir8mzKPe-WxwGCBgnLLmopONailjBX37D7qNUwolVTNVy44KKgv1_kSZFHNO6B6CYVTPDaHnhtBzQxT2zePoH8i_5S_A9QkoNcPD_016tVzVR-UfkV7Aow</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2593790507</pqid></control><display><type>article</type><title>Identifying and correcting spatial bias in opportunistic citizen science data for wild ungulates in Norway</title><source>Open Access: DOAJ - Directory of Open Access Journals</source><source>Open Access: PubMed Central</source><source>Open Access: Wiley-Blackwell Open Access Journals</source><source>Wiley Online Library Journals</source><source>EZB Electronic Journals Library</source><creator>Cretois, Benjamin ; Simmonds, Emily G. ; Linnell, John D. C. ; Moorter, Bram ; Rolandsen, Christer M. ; Solberg, Erling J. ; Strand, Olav ; Gundersen, Vegard ; Roer, Ole ; Rød, Jan Ketil</creator><creatorcontrib>Cretois, Benjamin ; Simmonds, Emily G. ; Linnell, John D. C. ; Moorter, Bram ; Rolandsen, Christer M. ; Solberg, Erling J. ; Strand, Olav ; Gundersen, Vegard ; Roer, Ole ; Rød, Jan Ketil</creatorcontrib><description>Many publications make use of opportunistic data, such as citizen science observation data, to infer large‐scale properties of species’ distributions. However, the few publications that use opportunistic citizen science data to study animal ecology at a habitat level do so without accounting for spatial biases in opportunistic records or using methods that are difficult to generalize. In this study, we explore the biases that exist in opportunistic observations and suggest an approach to correct for them. We first examined the extent of the biases in opportunistic citizen science observations of three wild ungulate species in Norway by comparing them to data from GPS telemetry. We then quantified the extent of the biases by specifying a model of the biases. From the bias model, we sampled available locations within the species’ home range. Along with opportunistic observations, we used the corrected availability locations to estimate a resource selection function (RSF). We tested this method with simulations and empirical datasets for the three species. We compared the results of our correction method to RSFs obtained using opportunistic observations without correction and to RSFs using GPS‐telemetry data. Finally, we compared habitat suitability maps obtained using each of these models. Opportunistic observations are more affected by human access and visibility than locations derived from GPS telemetry. This has consequences for drawing inferences about species’ ecology. Models naïvely using opportunistic observations in habitat‐use studies can result in spurious inferences. However, sampling availability locations based on the spatial biases in opportunistic data improves the estimation of the species’ RSFs and predicted habitat suitability maps in some cases. This study highlights the challenges and opportunities of using opportunistic observations in habitat‐use studies. While our method is not foolproof it is a first step toward unlocking the potential of opportunistic citizen science data for habitat‐use studies.
We provide a novel method to use citizen science data for fine‐scale studies.</description><identifier>ISSN: 2045-7758</identifier><identifier>EISSN: 2045-7758</identifier><identifier>DOI: 10.1002/ece3.8200</identifier><identifier>PMID: 34765170</identifier><language>eng</language><publisher>England: John Wiley & Sons, Inc</publisher><subject>Availability ; Bias ; Biotelemetry ; citizen science ; Data collection ; Datasets ; Documents ; Global positioning systems ; GPS ; habitat selection ; Habitats ; Home range ; Moose ; opportunistic data ; preferential sampling ; Reindeer ; Science ; Scientists ; spatial bias ; Species ; Telemetry ; Ungulates ; Visibility</subject><ispartof>Ecology and evolution, 2021-11, Vol.11 (21), p.15191-15204</ispartof><rights>2021 The Authors. published by John Wiley & Sons Ltd.</rights><rights>2021 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.</rights><rights>2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5090-da145e622f6aa2ab4195b38e9bd94b59d2be52f1fff3e79f73f5da608e2bf5693</citedby><cites>FETCH-LOGICAL-c5090-da145e622f6aa2ab4195b38e9bd94b59d2be52f1fff3e79f73f5da608e2bf5693</cites><orcidid>0000-0001-8668-3321 ; 0000-0002-3196-1993</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8571602/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8571602/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,1418,2103,11564,27926,27927,45576,45577,46054,46478,53793,53795</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34765170$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cretois, Benjamin</creatorcontrib><creatorcontrib>Simmonds, Emily G.</creatorcontrib><creatorcontrib>Linnell, John D. C.</creatorcontrib><creatorcontrib>Moorter, Bram</creatorcontrib><creatorcontrib>Rolandsen, Christer M.</creatorcontrib><creatorcontrib>Solberg, Erling J.</creatorcontrib><creatorcontrib>Strand, Olav</creatorcontrib><creatorcontrib>Gundersen, Vegard</creatorcontrib><creatorcontrib>Roer, Ole</creatorcontrib><creatorcontrib>Rød, Jan Ketil</creatorcontrib><title>Identifying and correcting spatial bias in opportunistic citizen science data for wild ungulates in Norway</title><title>Ecology and evolution</title><addtitle>Ecol Evol</addtitle><description>Many publications make use of opportunistic data, such as citizen science observation data, to infer large‐scale properties of species’ distributions. However, the few publications that use opportunistic citizen science data to study animal ecology at a habitat level do so without accounting for spatial biases in opportunistic records or using methods that are difficult to generalize. In this study, we explore the biases that exist in opportunistic observations and suggest an approach to correct for them. We first examined the extent of the biases in opportunistic citizen science observations of three wild ungulate species in Norway by comparing them to data from GPS telemetry. We then quantified the extent of the biases by specifying a model of the biases. From the bias model, we sampled available locations within the species’ home range. Along with opportunistic observations, we used the corrected availability locations to estimate a resource selection function (RSF). We tested this method with simulations and empirical datasets for the three species. We compared the results of our correction method to RSFs obtained using opportunistic observations without correction and to RSFs using GPS‐telemetry data. Finally, we compared habitat suitability maps obtained using each of these models. Opportunistic observations are more affected by human access and visibility than locations derived from GPS telemetry. This has consequences for drawing inferences about species’ ecology. Models naïvely using opportunistic observations in habitat‐use studies can result in spurious inferences. However, sampling availability locations based on the spatial biases in opportunistic data improves the estimation of the species’ RSFs and predicted habitat suitability maps in some cases. This study highlights the challenges and opportunities of using opportunistic observations in habitat‐use studies. While our method is not foolproof it is a first step toward unlocking the potential of opportunistic citizen science data for habitat‐use studies.
We provide a novel method to use citizen science data for fine‐scale studies.</description><subject>Availability</subject><subject>Bias</subject><subject>Biotelemetry</subject><subject>citizen science</subject><subject>Data collection</subject><subject>Datasets</subject><subject>Documents</subject><subject>Global positioning systems</subject><subject>GPS</subject><subject>habitat selection</subject><subject>Habitats</subject><subject>Home range</subject><subject>Moose</subject><subject>opportunistic data</subject><subject>preferential sampling</subject><subject>Reindeer</subject><subject>Science</subject><subject>Scientists</subject><subject>spatial bias</subject><subject>Species</subject><subject>Telemetry</subject><subject>Ungulates</subject><subject>Visibility</subject><issn>2045-7758</issn><issn>2045-7758</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNp1kk1vEzEQQFcIRKvSA38AWeICh7S2d732XpBQFCBSBRc4W7P2ODja2MHebRV-Pd6kVC0Svvjr-Wk8M1X1mtErRim_RoP1leKUPqvOOW3EQkqhnj9an1WXOW9pGS3lDZUvq7O6ka1gkp5X27XFMHp38GFDIFhiYkpoxnmb9zB6GEjvIRMfSNzvYxqn4PPoDTF-9L8xkGw8BoPEwgjExUTu_GDJFDbTACMeH36N6Q4Or6oXDoaMl_fzRfXj0-r78svi5tvn9fLjzcII2tGFBdYIbDl3LQCHvmGd6GuFXW-7phed5T0K7phzrkbZOVk7YaGlCnnvRNvVF9X65LURtnqf_A7SQUfw-ngQ00ZDKj8YUAtboxElE6BM04JSJQKJwCxVzLWMFteHk2s_9Tu0puQqwfBE-vQm-J96E2-1EpKVdBfBu3tBir8mzKPe-WxwGCBgnLLmopONailjBX37D7qNUwolVTNVy44KKgv1_kSZFHNO6B6CYVTPDaHnhtBzQxT2zePoH8i_5S_A9QkoNcPD_016tVzVR-UfkV7Aow</recordid><startdate>202111</startdate><enddate>202111</enddate><creator>Cretois, Benjamin</creator><creator>Simmonds, Emily G.</creator><creator>Linnell, John D. C.</creator><creator>Moorter, Bram</creator><creator>Rolandsen, Christer M.</creator><creator>Solberg, Erling J.</creator><creator>Strand, Olav</creator><creator>Gundersen, Vegard</creator><creator>Roer, Ole</creator><creator>Rød, Jan Ketil</creator><general>John Wiley & Sons, Inc</general><general>John Wiley and Sons Inc</general><general>Wiley</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7X2</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M0K</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8668-3321</orcidid><orcidid>https://orcid.org/0000-0002-3196-1993</orcidid></search><sort><creationdate>202111</creationdate><title>Identifying and correcting spatial bias in opportunistic citizen science data for wild ungulates in Norway</title><author>Cretois, Benjamin ; Simmonds, Emily G. ; Linnell, John D. C. ; Moorter, Bram ; Rolandsen, Christer M. ; Solberg, Erling J. ; Strand, Olav ; Gundersen, Vegard ; Roer, Ole ; Rød, Jan Ketil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5090-da145e622f6aa2ab4195b38e9bd94b59d2be52f1fff3e79f73f5da608e2bf5693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Availability</topic><topic>Bias</topic><topic>Biotelemetry</topic><topic>citizen science</topic><topic>Data collection</topic><topic>Datasets</topic><topic>Documents</topic><topic>Global positioning systems</topic><topic>GPS</topic><topic>habitat selection</topic><topic>Habitats</topic><topic>Home range</topic><topic>Moose</topic><topic>opportunistic data</topic><topic>preferential sampling</topic><topic>Reindeer</topic><topic>Science</topic><topic>Scientists</topic><topic>spatial bias</topic><topic>Species</topic><topic>Telemetry</topic><topic>Ungulates</topic><topic>Visibility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cretois, Benjamin</creatorcontrib><creatorcontrib>Simmonds, Emily G.</creatorcontrib><creatorcontrib>Linnell, John D. C.</creatorcontrib><creatorcontrib>Moorter, Bram</creatorcontrib><creatorcontrib>Rolandsen, Christer M.</creatorcontrib><creatorcontrib>Solberg, Erling J.</creatorcontrib><creatorcontrib>Strand, Olav</creatorcontrib><creatorcontrib>Gundersen, Vegard</creatorcontrib><creatorcontrib>Roer, Ole</creatorcontrib><creatorcontrib>Rød, Jan Ketil</creatorcontrib><collection>Open Access: Wiley-Blackwell Open Access Journals</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>Ecology and evolution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cretois, Benjamin</au><au>Simmonds, Emily G.</au><au>Linnell, John D. C.</au><au>Moorter, Bram</au><au>Rolandsen, Christer M.</au><au>Solberg, Erling J.</au><au>Strand, Olav</au><au>Gundersen, Vegard</au><au>Roer, Ole</au><au>Rød, Jan Ketil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identifying and correcting spatial bias in opportunistic citizen science data for wild ungulates in Norway</atitle><jtitle>Ecology and evolution</jtitle><addtitle>Ecol Evol</addtitle><date>2021-11</date><risdate>2021</risdate><volume>11</volume><issue>21</issue><spage>15191</spage><epage>15204</epage><pages>15191-15204</pages><issn>2045-7758</issn><eissn>2045-7758</eissn><abstract>Many publications make use of opportunistic data, such as citizen science observation data, to infer large‐scale properties of species’ distributions. However, the few publications that use opportunistic citizen science data to study animal ecology at a habitat level do so without accounting for spatial biases in opportunistic records or using methods that are difficult to generalize. In this study, we explore the biases that exist in opportunistic observations and suggest an approach to correct for them. We first examined the extent of the biases in opportunistic citizen science observations of three wild ungulate species in Norway by comparing them to data from GPS telemetry. We then quantified the extent of the biases by specifying a model of the biases. From the bias model, we sampled available locations within the species’ home range. Along with opportunistic observations, we used the corrected availability locations to estimate a resource selection function (RSF). We tested this method with simulations and empirical datasets for the three species. We compared the results of our correction method to RSFs obtained using opportunistic observations without correction and to RSFs using GPS‐telemetry data. Finally, we compared habitat suitability maps obtained using each of these models. Opportunistic observations are more affected by human access and visibility than locations derived from GPS telemetry. This has consequences for drawing inferences about species’ ecology. Models naïvely using opportunistic observations in habitat‐use studies can result in spurious inferences. However, sampling availability locations based on the spatial biases in opportunistic data improves the estimation of the species’ RSFs and predicted habitat suitability maps in some cases. This study highlights the challenges and opportunities of using opportunistic observations in habitat‐use studies. While our method is not foolproof it is a first step toward unlocking the potential of opportunistic citizen science data for habitat‐use studies.
We provide a novel method to use citizen science data for fine‐scale studies.</abstract><cop>England</cop><pub>John Wiley & Sons, Inc</pub><pmid>34765170</pmid><doi>10.1002/ece3.8200</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-8668-3321</orcidid><orcidid>https://orcid.org/0000-0002-3196-1993</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-7758 |
ispartof | Ecology and evolution, 2021-11, Vol.11 (21), p.15191-15204 |
issn | 2045-7758 2045-7758 |
language | eng |
recordid | cdi_wiley_primary_10_1002_ece3_8200_ECE38200 |
source | Open Access: DOAJ - Directory of Open Access Journals; Open Access: PubMed Central; Open Access: Wiley-Blackwell Open Access Journals; Wiley Online Library Journals; EZB Electronic Journals Library |
subjects | Availability Bias Biotelemetry citizen science Data collection Datasets Documents Global positioning systems GPS habitat selection Habitats Home range Moose opportunistic data preferential sampling Reindeer Science Scientists spatial bias Species Telemetry Ungulates Visibility |
title | Identifying and correcting spatial bias in opportunistic citizen science data for wild ungulates in Norway |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T16%3A29%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identifying%20and%20correcting%20spatial%20bias%20in%20opportunistic%20citizen%20science%20data%20for%20wild%20ungulates%20in%20Norway&rft.jtitle=Ecology%20and%20evolution&rft.au=Cretois,%20Benjamin&rft.date=2021-11&rft.volume=11&rft.issue=21&rft.spage=15191&rft.epage=15204&rft.pages=15191-15204&rft.issn=2045-7758&rft.eissn=2045-7758&rft_id=info:doi/10.1002/ece3.8200&rft_dat=%3Cproquest_doaj_%3E2597486011%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2593790507&rft_id=info:pmid/34765170&rft_doaj_id=oai_doaj_org_article_5d3ec5517a8c46a885097ea1d081f610&rfr_iscdi=true |