Pharmacoepidemiologic Screening of Potential Oral Anticoagulant Drug Interactions Leading to Thromboembolic Events
Drug‐drug interactions (DDIs) with oral anticoagulants may lead to under‐anticoagulation and increased risk of thromboembolism. Although warfarin is susceptible to numerous DDIs, few studies have examined DDIs resulting in thromboembolism or those involving direct‐acting oral anticoagulants (DOACs)....
Gespeichert in:
Veröffentlicht in: | Clinical pharmacology and therapeutics 2020-08, Vol.108 (2), p.377-386 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 386 |
---|---|
container_issue | 2 |
container_start_page | 377 |
container_title | Clinical pharmacology and therapeutics |
container_volume | 108 |
creator | Zhou, Meijia Leonard, Charles E. Brensinger, Colleen M. Bilker, Warren B. Kimmel, Stephen E. Hecht, Todd E. H. Hennessy, Sean |
description | Drug‐drug interactions (DDIs) with oral anticoagulants may lead to under‐anticoagulation and increased risk of thromboembolism. Although warfarin is susceptible to numerous DDIs, few studies have examined DDIs resulting in thromboembolism or those involving direct‐acting oral anticoagulants (DOACs). We aimed to identify medications that increase the rate of hospitalization for thromboembolic events when taken concomitantly with oral anticoagulants. We conducted a high‐throughput pharmacoepidemiologic screening study using Optum Clinformatics Data Mart, 2000–2016. We performed self‐controlled case series studies among adult users of oral anticoagulants (warfarin, dabigatran, rivaroxaban, apixaban, and edoxaban) with at least one hospitalization for a thromboembolic event. Among eligible patients, we identified all oral medications frequently co‐prescribed with oral anticoagulants as potential interacting precipitants. Conditional Poisson regression was used to estimate rate ratios comparing precipitant exposed vs. unexposed time for each anticoagulant‐precipitant pair. To minimize within‐person confounding by indication for the precipitant, we used pravastatin as a negative control object drug. Multiple estimation was adjusted using semi‐Bayes shrinkage. We screened 1,622 oral anticoagulant‐precipitant drug pairs and identified 226 (14%) drug pairs associated with statistically significantly elevated risk of thromboembolism. Using pravastatin as the negative control object drug, this list was reduced to 69 potential DDI signals for thromboembolism, 33 (48%) of which were not documented in the DDI knowledge databases Lexicomp and/or Micromedex. There were more DDI signals associated with warfarin than DOACs. This study reproduced several previously documented oral anticoagulant DDIs and identified potential DDI signals that deserve to be examined in future etiologic studies. |
doi_str_mv | 10.1002/cpt.1845 |
format | Article |
fullrecord | <record><control><sourceid>wiley_pubme</sourceid><recordid>TN_cdi_wiley_primary_10_1002_cpt_1845_CPT1845</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CPT1845</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4765-7d49e158dede93c0ba7d1a372f0d378c8769b3559106b02ff9a8bbaf7e84975e3</originalsourceid><addsrcrecordid>eNqNkVGL1DAUhYMo7rgK_gLpoyBdk6ZpkhdhqasuDOyA43NI09tOpE2GNLOy_947zjrog-BDkhvynXMvJ4S8ZvSKUVq9d_t8xVQtnpAVE7wqG8HFU7KilOpSV7y5IC-W5Ttea63Uc3LBq0oi16xI2uxsmq2LsPc9zD5OcfSu-OoSQPBhLOJQbGKGkL2diruE2zXWLtrxMNmQi4_pMBa3IUOyLvsYlmINtj8qcyy2uxTnLgKuCV1v7tFneUmeDXZa4NXjeUm-fbrZtl_K9d3n2_Z6XbpaNqKUfa2BCdVDD5o72lnZM8tlNdCeS-WUbHTHhdCMNh2thkFb1XV2kKBqLQXwS_Lh5Ls_dDP0Dnvj-Gaf_GzTg4nWm79fgt-ZMd4bie05l2jw9mTgUlyWBMNZy6g55m4wd3PMHdE3f_Y6g7-DRkCdgB_QxWFxHoKDM4Y_g5RWVYMVZa3P9phlGw8ho_Td_0uRLh9pP8HDPyc27Wb7a_KfudaxBg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Pharmacoepidemiologic Screening of Potential Oral Anticoagulant Drug Interactions Leading to Thromboembolic Events</title><source>Access via Wiley Online Library</source><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><creator>Zhou, Meijia ; Leonard, Charles E. ; Brensinger, Colleen M. ; Bilker, Warren B. ; Kimmel, Stephen E. ; Hecht, Todd E. H. ; Hennessy, Sean</creator><creatorcontrib>Zhou, Meijia ; Leonard, Charles E. ; Brensinger, Colleen M. ; Bilker, Warren B. ; Kimmel, Stephen E. ; Hecht, Todd E. H. ; Hennessy, Sean</creatorcontrib><description>Drug‐drug interactions (DDIs) with oral anticoagulants may lead to under‐anticoagulation and increased risk of thromboembolism. Although warfarin is susceptible to numerous DDIs, few studies have examined DDIs resulting in thromboembolism or those involving direct‐acting oral anticoagulants (DOACs). We aimed to identify medications that increase the rate of hospitalization for thromboembolic events when taken concomitantly with oral anticoagulants. We conducted a high‐throughput pharmacoepidemiologic screening study using Optum Clinformatics Data Mart, 2000–2016. We performed self‐controlled case series studies among adult users of oral anticoagulants (warfarin, dabigatran, rivaroxaban, apixaban, and edoxaban) with at least one hospitalization for a thromboembolic event. Among eligible patients, we identified all oral medications frequently co‐prescribed with oral anticoagulants as potential interacting precipitants. Conditional Poisson regression was used to estimate rate ratios comparing precipitant exposed vs. unexposed time for each anticoagulant‐precipitant pair. To minimize within‐person confounding by indication for the precipitant, we used pravastatin as a negative control object drug. Multiple estimation was adjusted using semi‐Bayes shrinkage. We screened 1,622 oral anticoagulant‐precipitant drug pairs and identified 226 (14%) drug pairs associated with statistically significantly elevated risk of thromboembolism. Using pravastatin as the negative control object drug, this list was reduced to 69 potential DDI signals for thromboembolism, 33 (48%) of which were not documented in the DDI knowledge databases Lexicomp and/or Micromedex. There were more DDI signals associated with warfarin than DOACs. This study reproduced several previously documented oral anticoagulant DDIs and identified potential DDI signals that deserve to be examined in future etiologic studies.</description><identifier>ISSN: 0009-9236</identifier><identifier>EISSN: 1532-6535</identifier><identifier>DOI: 10.1002/cpt.1845</identifier><identifier>PMID: 32275326</identifier><language>eng</language><publisher>HOBOKEN: Wiley</publisher><subject>Life Sciences & Biomedicine ; Pharmacology & Pharmacy ; Science & Technology</subject><ispartof>Clinical pharmacology and therapeutics, 2020-08, Vol.108 (2), p.377-386</ispartof><rights>2020 The Authors © 2020 American Society for Clinical Pharmacology and Therapeutics</rights><rights>2020 The Authors Clinical Pharmacology & Therapeutics © 2020 American Society for Clinical Pharmacology and Therapeutics.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>12</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000532982600001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c4765-7d49e158dede93c0ba7d1a372f0d378c8769b3559106b02ff9a8bbaf7e84975e3</citedby><cites>FETCH-LOGICAL-c4765-7d49e158dede93c0ba7d1a372f0d378c8769b3559106b02ff9a8bbaf7e84975e3</cites><orcidid>0000-0002-5092-9657 ; 0000-0001-8266-1432</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcpt.1845$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcpt.1845$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,315,781,785,886,1418,27929,27930,28253,45579,45580</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32275326$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhou, Meijia</creatorcontrib><creatorcontrib>Leonard, Charles E.</creatorcontrib><creatorcontrib>Brensinger, Colleen M.</creatorcontrib><creatorcontrib>Bilker, Warren B.</creatorcontrib><creatorcontrib>Kimmel, Stephen E.</creatorcontrib><creatorcontrib>Hecht, Todd E. H.</creatorcontrib><creatorcontrib>Hennessy, Sean</creatorcontrib><title>Pharmacoepidemiologic Screening of Potential Oral Anticoagulant Drug Interactions Leading to Thromboembolic Events</title><title>Clinical pharmacology and therapeutics</title><addtitle>CLIN PHARMACOL THER</addtitle><addtitle>Clin Pharmacol Ther</addtitle><description>Drug‐drug interactions (DDIs) with oral anticoagulants may lead to under‐anticoagulation and increased risk of thromboembolism. Although warfarin is susceptible to numerous DDIs, few studies have examined DDIs resulting in thromboembolism or those involving direct‐acting oral anticoagulants (DOACs). We aimed to identify medications that increase the rate of hospitalization for thromboembolic events when taken concomitantly with oral anticoagulants. We conducted a high‐throughput pharmacoepidemiologic screening study using Optum Clinformatics Data Mart, 2000–2016. We performed self‐controlled case series studies among adult users of oral anticoagulants (warfarin, dabigatran, rivaroxaban, apixaban, and edoxaban) with at least one hospitalization for a thromboembolic event. Among eligible patients, we identified all oral medications frequently co‐prescribed with oral anticoagulants as potential interacting precipitants. Conditional Poisson regression was used to estimate rate ratios comparing precipitant exposed vs. unexposed time for each anticoagulant‐precipitant pair. To minimize within‐person confounding by indication for the precipitant, we used pravastatin as a negative control object drug. Multiple estimation was adjusted using semi‐Bayes shrinkage. We screened 1,622 oral anticoagulant‐precipitant drug pairs and identified 226 (14%) drug pairs associated with statistically significantly elevated risk of thromboembolism. Using pravastatin as the negative control object drug, this list was reduced to 69 potential DDI signals for thromboembolism, 33 (48%) of which were not documented in the DDI knowledge databases Lexicomp and/or Micromedex. There were more DDI signals associated with warfarin than DOACs. This study reproduced several previously documented oral anticoagulant DDIs and identified potential DDI signals that deserve to be examined in future etiologic studies.</description><subject>Life Sciences & Biomedicine</subject><subject>Pharmacology & Pharmacy</subject><subject>Science & Technology</subject><issn>0009-9236</issn><issn>1532-6535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkVGL1DAUhYMo7rgK_gLpoyBdk6ZpkhdhqasuDOyA43NI09tOpE2GNLOy_947zjrog-BDkhvynXMvJ4S8ZvSKUVq9d_t8xVQtnpAVE7wqG8HFU7KilOpSV7y5IC-W5Ttea63Uc3LBq0oi16xI2uxsmq2LsPc9zD5OcfSu-OoSQPBhLOJQbGKGkL2diruE2zXWLtrxMNmQi4_pMBa3IUOyLvsYlmINtj8qcyy2uxTnLgKuCV1v7tFneUmeDXZa4NXjeUm-fbrZtl_K9d3n2_Z6XbpaNqKUfa2BCdVDD5o72lnZM8tlNdCeS-WUbHTHhdCMNh2thkFb1XV2kKBqLQXwS_Lh5Ls_dDP0Dnvj-Gaf_GzTg4nWm79fgt-ZMd4bie05l2jw9mTgUlyWBMNZy6g55m4wd3PMHdE3f_Y6g7-DRkCdgB_QxWFxHoKDM4Y_g5RWVYMVZa3P9phlGw8ho_Td_0uRLh9pP8HDPyc27Wb7a_KfudaxBg</recordid><startdate>202008</startdate><enddate>202008</enddate><creator>Zhou, Meijia</creator><creator>Leonard, Charles E.</creator><creator>Brensinger, Colleen M.</creator><creator>Bilker, Warren B.</creator><creator>Kimmel, Stephen E.</creator><creator>Hecht, Todd E. H.</creator><creator>Hennessy, Sean</creator><general>Wiley</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5092-9657</orcidid><orcidid>https://orcid.org/0000-0001-8266-1432</orcidid></search><sort><creationdate>202008</creationdate><title>Pharmacoepidemiologic Screening of Potential Oral Anticoagulant Drug Interactions Leading to Thromboembolic Events</title><author>Zhou, Meijia ; Leonard, Charles E. ; Brensinger, Colleen M. ; Bilker, Warren B. ; Kimmel, Stephen E. ; Hecht, Todd E. H. ; Hennessy, Sean</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4765-7d49e158dede93c0ba7d1a372f0d378c8769b3559106b02ff9a8bbaf7e84975e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Life Sciences & Biomedicine</topic><topic>Pharmacology & Pharmacy</topic><topic>Science & Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Meijia</creatorcontrib><creatorcontrib>Leonard, Charles E.</creatorcontrib><creatorcontrib>Brensinger, Colleen M.</creatorcontrib><creatorcontrib>Bilker, Warren B.</creatorcontrib><creatorcontrib>Kimmel, Stephen E.</creatorcontrib><creatorcontrib>Hecht, Todd E. H.</creatorcontrib><creatorcontrib>Hennessy, Sean</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Clinical pharmacology and therapeutics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Meijia</au><au>Leonard, Charles E.</au><au>Brensinger, Colleen M.</au><au>Bilker, Warren B.</au><au>Kimmel, Stephen E.</au><au>Hecht, Todd E. H.</au><au>Hennessy, Sean</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pharmacoepidemiologic Screening of Potential Oral Anticoagulant Drug Interactions Leading to Thromboembolic Events</atitle><jtitle>Clinical pharmacology and therapeutics</jtitle><stitle>CLIN PHARMACOL THER</stitle><addtitle>Clin Pharmacol Ther</addtitle><date>2020-08</date><risdate>2020</risdate><volume>108</volume><issue>2</issue><spage>377</spage><epage>386</epage><pages>377-386</pages><issn>0009-9236</issn><eissn>1532-6535</eissn><abstract>Drug‐drug interactions (DDIs) with oral anticoagulants may lead to under‐anticoagulation and increased risk of thromboembolism. Although warfarin is susceptible to numerous DDIs, few studies have examined DDIs resulting in thromboembolism or those involving direct‐acting oral anticoagulants (DOACs). We aimed to identify medications that increase the rate of hospitalization for thromboembolic events when taken concomitantly with oral anticoagulants. We conducted a high‐throughput pharmacoepidemiologic screening study using Optum Clinformatics Data Mart, 2000–2016. We performed self‐controlled case series studies among adult users of oral anticoagulants (warfarin, dabigatran, rivaroxaban, apixaban, and edoxaban) with at least one hospitalization for a thromboembolic event. Among eligible patients, we identified all oral medications frequently co‐prescribed with oral anticoagulants as potential interacting precipitants. Conditional Poisson regression was used to estimate rate ratios comparing precipitant exposed vs. unexposed time for each anticoagulant‐precipitant pair. To minimize within‐person confounding by indication for the precipitant, we used pravastatin as a negative control object drug. Multiple estimation was adjusted using semi‐Bayes shrinkage. We screened 1,622 oral anticoagulant‐precipitant drug pairs and identified 226 (14%) drug pairs associated with statistically significantly elevated risk of thromboembolism. Using pravastatin as the negative control object drug, this list was reduced to 69 potential DDI signals for thromboembolism, 33 (48%) of which were not documented in the DDI knowledge databases Lexicomp and/or Micromedex. There were more DDI signals associated with warfarin than DOACs. This study reproduced several previously documented oral anticoagulant DDIs and identified potential DDI signals that deserve to be examined in future etiologic studies.</abstract><cop>HOBOKEN</cop><pub>Wiley</pub><pmid>32275326</pmid><doi>10.1002/cpt.1845</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-5092-9657</orcidid><orcidid>https://orcid.org/0000-0001-8266-1432</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0009-9236 |
ispartof | Clinical pharmacology and therapeutics, 2020-08, Vol.108 (2), p.377-386 |
issn | 0009-9236 1532-6535 |
language | eng |
recordid | cdi_wiley_primary_10_1002_cpt_1845_CPT1845 |
source | Access via Wiley Online Library; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /> |
subjects | Life Sciences & Biomedicine Pharmacology & Pharmacy Science & Technology |
title | Pharmacoepidemiologic Screening of Potential Oral Anticoagulant Drug Interactions Leading to Thromboembolic Events |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T08%3A37%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pharmacoepidemiologic%20Screening%20of%20Potential%20Oral%20Anticoagulant%20Drug%20Interactions%20Leading%20to%20Thromboembolic%20Events&rft.jtitle=Clinical%20pharmacology%20and%20therapeutics&rft.au=Zhou,%20Meijia&rft.date=2020-08&rft.volume=108&rft.issue=2&rft.spage=377&rft.epage=386&rft.pages=377-386&rft.issn=0009-9236&rft.eissn=1532-6535&rft_id=info:doi/10.1002/cpt.1845&rft_dat=%3Cwiley_pubme%3ECPT1845%3C/wiley_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/32275326&rfr_iscdi=true |