Parallel solution of saddle point systems with nested iterative solvers based on the Golub‐Kahan Bidiagonalization
Summary The Golub‐Kahan bidiagonalization is widely used in the singular value decomposition of rectangular matrices and has been generalized to an iterative solver for symmetric indefinite linear systems with a two‐by‐two block structure. In this work, we present a scalability study of this general...
Gespeichert in:
Veröffentlicht in: | Concurrency and computation 2021-06, Vol.33 (11), p.n/a, Article 5914 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 11 |
container_start_page | |
container_title | Concurrency and computation |
container_volume | 33 |
creator | Kruse, Carola Sosonkina, Masha Arioli, Mario Tardieu, Nicolas Rüde, Ulrich |
description | Summary
The Golub‐Kahan bidiagonalization is widely used in the singular value decomposition of rectangular matrices and has been generalized to an iterative solver for symmetric indefinite linear systems with a two‐by‐two block structure. In this work, we present a scalability study of this generalized solver as implemented in a recent release of the parallel numerical library PETSc (Portable, Extensible Toolkit for Scientific Computation). We present an improved solver performance for the two‐dimensional (2D) Stokes equations as compared to previous work. Furthermore, we investigate the performance of different parallel inner solvers in the outer Golub‐Kahan iteration for a three‐dimensional Stokes problem. The study includes parallel sparse direct solvers and multigrid methods. When increasing the number of cores for a fixed total problem size, the solver exhibits good speedups of up to 50% at the 1024 core count. For the tests in which the total problem size grows while the workload in each core stays constant, the parallel performance of the solver scales almost linearly with the increase in the core counts. In particular, the computation time increases only by about 15% when the number of cores increases from 80 to 1024 for a 2D test case. |
doi_str_mv | 10.1002/cpe.5914 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_wiley_primary_10_1002_cpe_5914_CPE5914</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2525081656</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2934-18ce463844e213662622cee0733389e28cf9d2859a115117089deb39cf93b5703</originalsourceid><addsrcrecordid>eNqNkM1KxDAUhYsoqKPgIwTcCFLNTZpOutQy_uCALnRd0vbWidSmJpkZxpWP4DP6JKaOzE5wdX_4zr2HE0VHQM-AUnZe9XgmMki2oj0QnMU05cn2pmfpbrTv3AulAJTDXuQflFVtiy1xpp17bTpiGuJUXbdIeqM7T9zKeXx1ZKn9jHQYhppoj1Z5vcBBtkDrSKlc2Ae5nyG5DrfKr4_POzVTHbnUtVbPplOtflfDi4Nop1Gtw8PfOoqeriaP-U08vb--zS-mccUynsQgK0xSLpMEGfA0mGesQqRjzrnMkMmqyWomRaYABMCYyqzGkmdhzUsxpnwUHa_v9ta8zYPz4sXMbfDhCiaYoBJSkQbqZE1V1jhnsSl6q1-VXRVAiyHTImRaDJkG9HSNLrE0jas0dhVucEqpSGQCaRY6CoGW_6dz7X-yyc2880Ea_0p1i6s_DRX5w-TH2DfkCZmz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2525081656</pqid></control><display><type>article</type><title>Parallel solution of saddle point systems with nested iterative solvers based on the Golub‐Kahan Bidiagonalization</title><source>Wiley Online Library - AutoHoldings Journals</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><creator>Kruse, Carola ; Sosonkina, Masha ; Arioli, Mario ; Tardieu, Nicolas ; Rüde, Ulrich</creator><creatorcontrib>Kruse, Carola ; Sosonkina, Masha ; Arioli, Mario ; Tardieu, Nicolas ; Rüde, Ulrich</creatorcontrib><description>Summary
The Golub‐Kahan bidiagonalization is widely used in the singular value decomposition of rectangular matrices and has been generalized to an iterative solver for symmetric indefinite linear systems with a two‐by‐two block structure. In this work, we present a scalability study of this generalized solver as implemented in a recent release of the parallel numerical library PETSc (Portable, Extensible Toolkit for Scientific Computation). We present an improved solver performance for the two‐dimensional (2D) Stokes equations as compared to previous work. Furthermore, we investigate the performance of different parallel inner solvers in the outer Golub‐Kahan iteration for a three‐dimensional Stokes problem. The study includes parallel sparse direct solvers and multigrid methods. When increasing the number of cores for a fixed total problem size, the solver exhibits good speedups of up to 50% at the 1024 core count. For the tests in which the total problem size grows while the workload in each core stays constant, the parallel performance of the solver scales almost linearly with the increase in the core counts. In particular, the computation time increases only by about 15% when the number of cores increases from 80 to 1024 for a 2D test case.</description><identifier>ISSN: 1532-0626</identifier><identifier>EISSN: 1532-0634</identifier><identifier>DOI: 10.1002/cpe.5914</identifier><language>eng</language><publisher>HOBOKEN: Wiley</publisher><subject>Computation ; Computer Science ; Computer Science, Software Engineering ; Computer Science, Theory & Methods ; Golub‐Kahan bidiagonalization ; Iterative methods ; iterative solver ; Linear systems ; Mathematical analysis ; Matrix methods ; Multigrid methods ; parallel performance ; PETSc ; Saddle points ; Science & Technology ; Singular value decomposition ; Solvers ; Technology ; Workload</subject><ispartof>Concurrency and computation, 2021-06, Vol.33 (11), p.n/a, Article 5914</ispartof><rights>2020 John Wiley & Sons, Ltd.</rights><rights>2021 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>3</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000548416900001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c2934-18ce463844e213662622cee0733389e28cf9d2859a115117089deb39cf93b5703</citedby><cites>FETCH-LOGICAL-c2934-18ce463844e213662622cee0733389e28cf9d2859a115117089deb39cf93b5703</cites><orcidid>0000-0002-4142-7356 ; 0000-0001-8796-8599</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcpe.5914$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcpe.5914$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,39263,45579,45580</link.rule.ids></links><search><creatorcontrib>Kruse, Carola</creatorcontrib><creatorcontrib>Sosonkina, Masha</creatorcontrib><creatorcontrib>Arioli, Mario</creatorcontrib><creatorcontrib>Tardieu, Nicolas</creatorcontrib><creatorcontrib>Rüde, Ulrich</creatorcontrib><title>Parallel solution of saddle point systems with nested iterative solvers based on the Golub‐Kahan Bidiagonalization</title><title>Concurrency and computation</title><addtitle>CONCURR COMP-PRACT E</addtitle><description>Summary
The Golub‐Kahan bidiagonalization is widely used in the singular value decomposition of rectangular matrices and has been generalized to an iterative solver for symmetric indefinite linear systems with a two‐by‐two block structure. In this work, we present a scalability study of this generalized solver as implemented in a recent release of the parallel numerical library PETSc (Portable, Extensible Toolkit for Scientific Computation). We present an improved solver performance for the two‐dimensional (2D) Stokes equations as compared to previous work. Furthermore, we investigate the performance of different parallel inner solvers in the outer Golub‐Kahan iteration for a three‐dimensional Stokes problem. The study includes parallel sparse direct solvers and multigrid methods. When increasing the number of cores for a fixed total problem size, the solver exhibits good speedups of up to 50% at the 1024 core count. For the tests in which the total problem size grows while the workload in each core stays constant, the parallel performance of the solver scales almost linearly with the increase in the core counts. In particular, the computation time increases only by about 15% when the number of cores increases from 80 to 1024 for a 2D test case.</description><subject>Computation</subject><subject>Computer Science</subject><subject>Computer Science, Software Engineering</subject><subject>Computer Science, Theory & Methods</subject><subject>Golub‐Kahan bidiagonalization</subject><subject>Iterative methods</subject><subject>iterative solver</subject><subject>Linear systems</subject><subject>Mathematical analysis</subject><subject>Matrix methods</subject><subject>Multigrid methods</subject><subject>parallel performance</subject><subject>PETSc</subject><subject>Saddle points</subject><subject>Science & Technology</subject><subject>Singular value decomposition</subject><subject>Solvers</subject><subject>Technology</subject><subject>Workload</subject><issn>1532-0626</issn><issn>1532-0634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkM1KxDAUhYsoqKPgIwTcCFLNTZpOutQy_uCALnRd0vbWidSmJpkZxpWP4DP6JKaOzE5wdX_4zr2HE0VHQM-AUnZe9XgmMki2oj0QnMU05cn2pmfpbrTv3AulAJTDXuQflFVtiy1xpp17bTpiGuJUXbdIeqM7T9zKeXx1ZKn9jHQYhppoj1Z5vcBBtkDrSKlc2Ae5nyG5DrfKr4_POzVTHbnUtVbPplOtflfDi4Nop1Gtw8PfOoqeriaP-U08vb--zS-mccUynsQgK0xSLpMEGfA0mGesQqRjzrnMkMmqyWomRaYABMCYyqzGkmdhzUsxpnwUHa_v9ta8zYPz4sXMbfDhCiaYoBJSkQbqZE1V1jhnsSl6q1-VXRVAiyHTImRaDJkG9HSNLrE0jas0dhVucEqpSGQCaRY6CoGW_6dz7X-yyc2880Ea_0p1i6s_DRX5w-TH2DfkCZmz</recordid><startdate>20210610</startdate><enddate>20210610</enddate><creator>Kruse, Carola</creator><creator>Sosonkina, Masha</creator><creator>Arioli, Mario</creator><creator>Tardieu, Nicolas</creator><creator>Rüde, Ulrich</creator><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-4142-7356</orcidid><orcidid>https://orcid.org/0000-0001-8796-8599</orcidid></search><sort><creationdate>20210610</creationdate><title>Parallel solution of saddle point systems with nested iterative solvers based on the Golub‐Kahan Bidiagonalization</title><author>Kruse, Carola ; Sosonkina, Masha ; Arioli, Mario ; Tardieu, Nicolas ; Rüde, Ulrich</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2934-18ce463844e213662622cee0733389e28cf9d2859a115117089deb39cf93b5703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Computation</topic><topic>Computer Science</topic><topic>Computer Science, Software Engineering</topic><topic>Computer Science, Theory & Methods</topic><topic>Golub‐Kahan bidiagonalization</topic><topic>Iterative methods</topic><topic>iterative solver</topic><topic>Linear systems</topic><topic>Mathematical analysis</topic><topic>Matrix methods</topic><topic>Multigrid methods</topic><topic>parallel performance</topic><topic>PETSc</topic><topic>Saddle points</topic><topic>Science & Technology</topic><topic>Singular value decomposition</topic><topic>Solvers</topic><topic>Technology</topic><topic>Workload</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kruse, Carola</creatorcontrib><creatorcontrib>Sosonkina, Masha</creatorcontrib><creatorcontrib>Arioli, Mario</creatorcontrib><creatorcontrib>Tardieu, Nicolas</creatorcontrib><creatorcontrib>Rüde, Ulrich</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Concurrency and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kruse, Carola</au><au>Sosonkina, Masha</au><au>Arioli, Mario</au><au>Tardieu, Nicolas</au><au>Rüde, Ulrich</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parallel solution of saddle point systems with nested iterative solvers based on the Golub‐Kahan Bidiagonalization</atitle><jtitle>Concurrency and computation</jtitle><stitle>CONCURR COMP-PRACT E</stitle><date>2021-06-10</date><risdate>2021</risdate><volume>33</volume><issue>11</issue><epage>n/a</epage><artnum>5914</artnum><issn>1532-0626</issn><eissn>1532-0634</eissn><abstract>Summary
The Golub‐Kahan bidiagonalization is widely used in the singular value decomposition of rectangular matrices and has been generalized to an iterative solver for symmetric indefinite linear systems with a two‐by‐two block structure. In this work, we present a scalability study of this generalized solver as implemented in a recent release of the parallel numerical library PETSc (Portable, Extensible Toolkit for Scientific Computation). We present an improved solver performance for the two‐dimensional (2D) Stokes equations as compared to previous work. Furthermore, we investigate the performance of different parallel inner solvers in the outer Golub‐Kahan iteration for a three‐dimensional Stokes problem. The study includes parallel sparse direct solvers and multigrid methods. When increasing the number of cores for a fixed total problem size, the solver exhibits good speedups of up to 50% at the 1024 core count. For the tests in which the total problem size grows while the workload in each core stays constant, the parallel performance of the solver scales almost linearly with the increase in the core counts. In particular, the computation time increases only by about 15% when the number of cores increases from 80 to 1024 for a 2D test case.</abstract><cop>HOBOKEN</cop><pub>Wiley</pub><doi>10.1002/cpe.5914</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-4142-7356</orcidid><orcidid>https://orcid.org/0000-0001-8796-8599</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1532-0626 |
ispartof | Concurrency and computation, 2021-06, Vol.33 (11), p.n/a, Article 5914 |
issn | 1532-0626 1532-0634 |
language | eng |
recordid | cdi_wiley_primary_10_1002_cpe_5914_CPE5914 |
source | Wiley Online Library - AutoHoldings Journals; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /> |
subjects | Computation Computer Science Computer Science, Software Engineering Computer Science, Theory & Methods Golub‐Kahan bidiagonalization Iterative methods iterative solver Linear systems Mathematical analysis Matrix methods Multigrid methods parallel performance PETSc Saddle points Science & Technology Singular value decomposition Solvers Technology Workload |
title | Parallel solution of saddle point systems with nested iterative solvers based on the Golub‐Kahan Bidiagonalization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T05%3A55%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parallel%20solution%20of%20saddle%20point%20systems%20with%20nested%20iterative%20solvers%20based%20on%20the%20Golub%E2%80%90Kahan%20Bidiagonalization&rft.jtitle=Concurrency%20and%20computation&rft.au=Kruse,%20Carola&rft.date=2021-06-10&rft.volume=33&rft.issue=11&rft.epage=n/a&rft.artnum=5914&rft.issn=1532-0626&rft.eissn=1532-0634&rft_id=info:doi/10.1002/cpe.5914&rft_dat=%3Cproquest_wiley%3E2525081656%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2525081656&rft_id=info:pmid/&rfr_iscdi=true |