Parallel solution of saddle point systems with nested iterative solvers based on the Golub‐Kahan Bidiagonalization

Summary The Golub‐Kahan bidiagonalization is widely used in the singular value decomposition of rectangular matrices and has been generalized to an iterative solver for symmetric indefinite linear systems with a two‐by‐two block structure. In this work, we present a scalability study of this general...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Concurrency and computation 2021-06, Vol.33 (11), p.n/a, Article 5914
Hauptverfasser: Kruse, Carola, Sosonkina, Masha, Arioli, Mario, Tardieu, Nicolas, Rüde, Ulrich
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 11
container_start_page
container_title Concurrency and computation
container_volume 33
creator Kruse, Carola
Sosonkina, Masha
Arioli, Mario
Tardieu, Nicolas
Rüde, Ulrich
description Summary The Golub‐Kahan bidiagonalization is widely used in the singular value decomposition of rectangular matrices and has been generalized to an iterative solver for symmetric indefinite linear systems with a two‐by‐two block structure. In this work, we present a scalability study of this generalized solver as implemented in a recent release of the parallel numerical library PETSc (Portable, Extensible Toolkit for Scientific Computation). We present an improved solver performance for the two‐dimensional (2D) Stokes equations as compared to previous work. Furthermore, we investigate the performance of different parallel inner solvers in the outer Golub‐Kahan iteration for a three‐dimensional Stokes problem. The study includes parallel sparse direct solvers and multigrid methods. When increasing the number of cores for a fixed total problem size, the solver exhibits good speedups of up to 50% at the 1024 core count. For the tests in which the total problem size grows while the workload in each core stays constant, the parallel performance of the solver scales almost linearly with the increase in the core counts. In particular, the computation time increases only by about 15% when the number of cores increases from 80 to 1024 for a 2D test case.
doi_str_mv 10.1002/cpe.5914
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_wiley_primary_10_1002_cpe_5914_CPE5914</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2525081656</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2934-18ce463844e213662622cee0733389e28cf9d2859a115117089deb39cf93b5703</originalsourceid><addsrcrecordid>eNqNkM1KxDAUhYsoqKPgIwTcCFLNTZpOutQy_uCALnRd0vbWidSmJpkZxpWP4DP6JKaOzE5wdX_4zr2HE0VHQM-AUnZe9XgmMki2oj0QnMU05cn2pmfpbrTv3AulAJTDXuQflFVtiy1xpp17bTpiGuJUXbdIeqM7T9zKeXx1ZKn9jHQYhppoj1Z5vcBBtkDrSKlc2Ae5nyG5DrfKr4_POzVTHbnUtVbPplOtflfDi4Nop1Gtw8PfOoqeriaP-U08vb--zS-mccUynsQgK0xSLpMEGfA0mGesQqRjzrnMkMmqyWomRaYABMCYyqzGkmdhzUsxpnwUHa_v9ta8zYPz4sXMbfDhCiaYoBJSkQbqZE1V1jhnsSl6q1-VXRVAiyHTImRaDJkG9HSNLrE0jas0dhVucEqpSGQCaRY6CoGW_6dz7X-yyc2880Ea_0p1i6s_DRX5w-TH2DfkCZmz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2525081656</pqid></control><display><type>article</type><title>Parallel solution of saddle point systems with nested iterative solvers based on the Golub‐Kahan Bidiagonalization</title><source>Wiley Online Library - AutoHoldings Journals</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Kruse, Carola ; Sosonkina, Masha ; Arioli, Mario ; Tardieu, Nicolas ; Rüde, Ulrich</creator><creatorcontrib>Kruse, Carola ; Sosonkina, Masha ; Arioli, Mario ; Tardieu, Nicolas ; Rüde, Ulrich</creatorcontrib><description>Summary The Golub‐Kahan bidiagonalization is widely used in the singular value decomposition of rectangular matrices and has been generalized to an iterative solver for symmetric indefinite linear systems with a two‐by‐two block structure. In this work, we present a scalability study of this generalized solver as implemented in a recent release of the parallel numerical library PETSc (Portable, Extensible Toolkit for Scientific Computation). We present an improved solver performance for the two‐dimensional (2D) Stokes equations as compared to previous work. Furthermore, we investigate the performance of different parallel inner solvers in the outer Golub‐Kahan iteration for a three‐dimensional Stokes problem. The study includes parallel sparse direct solvers and multigrid methods. When increasing the number of cores for a fixed total problem size, the solver exhibits good speedups of up to 50% at the 1024 core count. For the tests in which the total problem size grows while the workload in each core stays constant, the parallel performance of the solver scales almost linearly with the increase in the core counts. In particular, the computation time increases only by about 15% when the number of cores increases from 80 to 1024 for a 2D test case.</description><identifier>ISSN: 1532-0626</identifier><identifier>EISSN: 1532-0634</identifier><identifier>DOI: 10.1002/cpe.5914</identifier><language>eng</language><publisher>HOBOKEN: Wiley</publisher><subject>Computation ; Computer Science ; Computer Science, Software Engineering ; Computer Science, Theory &amp; Methods ; Golub‐Kahan bidiagonalization ; Iterative methods ; iterative solver ; Linear systems ; Mathematical analysis ; Matrix methods ; Multigrid methods ; parallel performance ; PETSc ; Saddle points ; Science &amp; Technology ; Singular value decomposition ; Solvers ; Technology ; Workload</subject><ispartof>Concurrency and computation, 2021-06, Vol.33 (11), p.n/a, Article 5914</ispartof><rights>2020 John Wiley &amp; Sons, Ltd.</rights><rights>2021 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>3</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000548416900001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c2934-18ce463844e213662622cee0733389e28cf9d2859a115117089deb39cf93b5703</citedby><cites>FETCH-LOGICAL-c2934-18ce463844e213662622cee0733389e28cf9d2859a115117089deb39cf93b5703</cites><orcidid>0000-0002-4142-7356 ; 0000-0001-8796-8599</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcpe.5914$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcpe.5914$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,39263,45579,45580</link.rule.ids></links><search><creatorcontrib>Kruse, Carola</creatorcontrib><creatorcontrib>Sosonkina, Masha</creatorcontrib><creatorcontrib>Arioli, Mario</creatorcontrib><creatorcontrib>Tardieu, Nicolas</creatorcontrib><creatorcontrib>Rüde, Ulrich</creatorcontrib><title>Parallel solution of saddle point systems with nested iterative solvers based on the Golub‐Kahan Bidiagonalization</title><title>Concurrency and computation</title><addtitle>CONCURR COMP-PRACT E</addtitle><description>Summary The Golub‐Kahan bidiagonalization is widely used in the singular value decomposition of rectangular matrices and has been generalized to an iterative solver for symmetric indefinite linear systems with a two‐by‐two block structure. In this work, we present a scalability study of this generalized solver as implemented in a recent release of the parallel numerical library PETSc (Portable, Extensible Toolkit for Scientific Computation). We present an improved solver performance for the two‐dimensional (2D) Stokes equations as compared to previous work. Furthermore, we investigate the performance of different parallel inner solvers in the outer Golub‐Kahan iteration for a three‐dimensional Stokes problem. The study includes parallel sparse direct solvers and multigrid methods. When increasing the number of cores for a fixed total problem size, the solver exhibits good speedups of up to 50% at the 1024 core count. For the tests in which the total problem size grows while the workload in each core stays constant, the parallel performance of the solver scales almost linearly with the increase in the core counts. In particular, the computation time increases only by about 15% when the number of cores increases from 80 to 1024 for a 2D test case.</description><subject>Computation</subject><subject>Computer Science</subject><subject>Computer Science, Software Engineering</subject><subject>Computer Science, Theory &amp; Methods</subject><subject>Golub‐Kahan bidiagonalization</subject><subject>Iterative methods</subject><subject>iterative solver</subject><subject>Linear systems</subject><subject>Mathematical analysis</subject><subject>Matrix methods</subject><subject>Multigrid methods</subject><subject>parallel performance</subject><subject>PETSc</subject><subject>Saddle points</subject><subject>Science &amp; Technology</subject><subject>Singular value decomposition</subject><subject>Solvers</subject><subject>Technology</subject><subject>Workload</subject><issn>1532-0626</issn><issn>1532-0634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkM1KxDAUhYsoqKPgIwTcCFLNTZpOutQy_uCALnRd0vbWidSmJpkZxpWP4DP6JKaOzE5wdX_4zr2HE0VHQM-AUnZe9XgmMki2oj0QnMU05cn2pmfpbrTv3AulAJTDXuQflFVtiy1xpp17bTpiGuJUXbdIeqM7T9zKeXx1ZKn9jHQYhppoj1Z5vcBBtkDrSKlc2Ae5nyG5DrfKr4_POzVTHbnUtVbPplOtflfDi4Nop1Gtw8PfOoqeriaP-U08vb--zS-mccUynsQgK0xSLpMEGfA0mGesQqRjzrnMkMmqyWomRaYABMCYyqzGkmdhzUsxpnwUHa_v9ta8zYPz4sXMbfDhCiaYoBJSkQbqZE1V1jhnsSl6q1-VXRVAiyHTImRaDJkG9HSNLrE0jas0dhVucEqpSGQCaRY6CoGW_6dz7X-yyc2880Ea_0p1i6s_DRX5w-TH2DfkCZmz</recordid><startdate>20210610</startdate><enddate>20210610</enddate><creator>Kruse, Carola</creator><creator>Sosonkina, Masha</creator><creator>Arioli, Mario</creator><creator>Tardieu, Nicolas</creator><creator>Rüde, Ulrich</creator><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-4142-7356</orcidid><orcidid>https://orcid.org/0000-0001-8796-8599</orcidid></search><sort><creationdate>20210610</creationdate><title>Parallel solution of saddle point systems with nested iterative solvers based on the Golub‐Kahan Bidiagonalization</title><author>Kruse, Carola ; Sosonkina, Masha ; Arioli, Mario ; Tardieu, Nicolas ; Rüde, Ulrich</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2934-18ce463844e213662622cee0733389e28cf9d2859a115117089deb39cf93b5703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Computation</topic><topic>Computer Science</topic><topic>Computer Science, Software Engineering</topic><topic>Computer Science, Theory &amp; Methods</topic><topic>Golub‐Kahan bidiagonalization</topic><topic>Iterative methods</topic><topic>iterative solver</topic><topic>Linear systems</topic><topic>Mathematical analysis</topic><topic>Matrix methods</topic><topic>Multigrid methods</topic><topic>parallel performance</topic><topic>PETSc</topic><topic>Saddle points</topic><topic>Science &amp; Technology</topic><topic>Singular value decomposition</topic><topic>Solvers</topic><topic>Technology</topic><topic>Workload</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kruse, Carola</creatorcontrib><creatorcontrib>Sosonkina, Masha</creatorcontrib><creatorcontrib>Arioli, Mario</creatorcontrib><creatorcontrib>Tardieu, Nicolas</creatorcontrib><creatorcontrib>Rüde, Ulrich</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Concurrency and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kruse, Carola</au><au>Sosonkina, Masha</au><au>Arioli, Mario</au><au>Tardieu, Nicolas</au><au>Rüde, Ulrich</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parallel solution of saddle point systems with nested iterative solvers based on the Golub‐Kahan Bidiagonalization</atitle><jtitle>Concurrency and computation</jtitle><stitle>CONCURR COMP-PRACT E</stitle><date>2021-06-10</date><risdate>2021</risdate><volume>33</volume><issue>11</issue><epage>n/a</epage><artnum>5914</artnum><issn>1532-0626</issn><eissn>1532-0634</eissn><abstract>Summary The Golub‐Kahan bidiagonalization is widely used in the singular value decomposition of rectangular matrices and has been generalized to an iterative solver for symmetric indefinite linear systems with a two‐by‐two block structure. In this work, we present a scalability study of this generalized solver as implemented in a recent release of the parallel numerical library PETSc (Portable, Extensible Toolkit for Scientific Computation). We present an improved solver performance for the two‐dimensional (2D) Stokes equations as compared to previous work. Furthermore, we investigate the performance of different parallel inner solvers in the outer Golub‐Kahan iteration for a three‐dimensional Stokes problem. The study includes parallel sparse direct solvers and multigrid methods. When increasing the number of cores for a fixed total problem size, the solver exhibits good speedups of up to 50% at the 1024 core count. For the tests in which the total problem size grows while the workload in each core stays constant, the parallel performance of the solver scales almost linearly with the increase in the core counts. In particular, the computation time increases only by about 15% when the number of cores increases from 80 to 1024 for a 2D test case.</abstract><cop>HOBOKEN</cop><pub>Wiley</pub><doi>10.1002/cpe.5914</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-4142-7356</orcidid><orcidid>https://orcid.org/0000-0001-8796-8599</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1532-0626
ispartof Concurrency and computation, 2021-06, Vol.33 (11), p.n/a, Article 5914
issn 1532-0626
1532-0634
language eng
recordid cdi_wiley_primary_10_1002_cpe_5914_CPE5914
source Wiley Online Library - AutoHoldings Journals; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Computation
Computer Science
Computer Science, Software Engineering
Computer Science, Theory & Methods
Golub‐Kahan bidiagonalization
Iterative methods
iterative solver
Linear systems
Mathematical analysis
Matrix methods
Multigrid methods
parallel performance
PETSc
Saddle points
Science & Technology
Singular value decomposition
Solvers
Technology
Workload
title Parallel solution of saddle point systems with nested iterative solvers based on the Golub‐Kahan Bidiagonalization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T05%3A55%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parallel%20solution%20of%20saddle%20point%20systems%20with%20nested%20iterative%20solvers%20based%20on%20the%20Golub%E2%80%90Kahan%20Bidiagonalization&rft.jtitle=Concurrency%20and%20computation&rft.au=Kruse,%20Carola&rft.date=2021-06-10&rft.volume=33&rft.issue=11&rft.epage=n/a&rft.artnum=5914&rft.issn=1532-0626&rft.eissn=1532-0634&rft_id=info:doi/10.1002/cpe.5914&rft_dat=%3Cproquest_wiley%3E2525081656%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2525081656&rft_id=info:pmid/&rfr_iscdi=true