Cesium Ion‐Mediated Microporous Carbon for CO2 Capture and Lithium‐Ion Storage

Activated carbon has been used in a wide range of applications owing to its large specific area, facile synthesis, and low cost. The synthesis of activated carbon mostly relies on potassium hydroxide (KOH)‐mediated activation which leads to the formation of micropores (

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ChemNanoMat : chemistry of nanomaterials for energy, biology and more biology and more, 2021-02, Vol.7 (2), p.150-157
Hauptverfasser: Lee, Hyeon Jeong, Ko, Dongah, Kim, Joo‐Seong, Park, Youngbin, Hwang, Insu, Yavuz, Cafer T., Choi, Jang Wook
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 157
container_issue 2
container_start_page 150
container_title ChemNanoMat : chemistry of nanomaterials for energy, biology and more
container_volume 7
creator Lee, Hyeon Jeong
Ko, Dongah
Kim, Joo‐Seong
Park, Youngbin
Hwang, Insu
Yavuz, Cafer T.
Choi, Jang Wook
description Activated carbon has been used in a wide range of applications owing to its large specific area, facile synthesis, and low cost. The synthesis of activated carbon mostly relies on potassium hydroxide (KOH)‐mediated activation which leads to the formation of micropores (
doi_str_mv 10.1002/cnma.202000541
format Article
fullrecord <record><control><sourceid>wiley</sourceid><recordid>TN_cdi_wiley_primary_10_1002_cnma_202000541_CNMA202000541</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CNMA202000541</sourcerecordid><originalsourceid>FETCH-LOGICAL-s2051-d0ba3126d87afceaf09cef0419c99b7d34f0e26deda992069517cb7194b1a3b23</originalsourceid><addsrcrecordid>eNpNkMtOwzAQRS0EElXplrV_IGXGzqNeVhGPSgmVeEjsLDt2IKiJIycR6o5P4Bv5ElyBKlYzV3fOLA4hlwhLBGBXVdeqJQMGAEmMJ2TGUIgoFezl9N9-ThbD8B5ucBUnCHxGHnI7NFNLN677_vwqrWnUaA0tm8q73nk3DTRXXruO1s7TfMtC7MfJW6o6Q4tmfAt0IANPH0fn1au9IGe12g128Tfn5Pnm-im_i4rt7SZfF9HAIMHIgFYcWWpWmaorq2oQla0hRlEJoTPD4xpsqK1RQjBIRYJZpTMUsUbFNeNzIn7_fjQ7u5e9b1rl9xJBHozIgxF5NCLz-3J9TPwH1KRZSw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Cesium Ion‐Mediated Microporous Carbon for CO2 Capture and Lithium‐Ion Storage</title><source>Wiley Online Library All Journals</source><creator>Lee, Hyeon Jeong ; Ko, Dongah ; Kim, Joo‐Seong ; Park, Youngbin ; Hwang, Insu ; Yavuz, Cafer T. ; Choi, Jang Wook</creator><creatorcontrib>Lee, Hyeon Jeong ; Ko, Dongah ; Kim, Joo‐Seong ; Park, Youngbin ; Hwang, Insu ; Yavuz, Cafer T. ; Choi, Jang Wook</creatorcontrib><description>Activated carbon has been used in a wide range of applications owing to its large specific area, facile synthesis, and low cost. The synthesis of activated carbon mostly relies on potassium hydroxide (KOH)‐mediated activation which leads to the formation of micropores (&lt;2 nm) after a washing step with acid. Here we report the preparation of activated carbon with an anomalously large surface area (3288 m2 g−1), obtained by employing an activation process mediated by cesium (Cs) ions. The high affinity of the carbon lattice for Cs ions induces immense interlayer expansion upon complexation of the intercalant Cs ion with the carbon host. Furthermore, the Cs‐activation process maintains the nitrogen content of the carbon source by enabling the activation process at low temperature. The large surface area and well‐preserved nitrogen content of Cs‐activated carbon takes advantage of its enhanced interaction with CO2 molecules (for superior CO2 capture) and lithium ions (for improved Li ion storage), respectively. The present investigation unveils a new approach toward tuning the key structural properties of activated carbon; that is, controlling the affinity of the carbon host for the intercalant ion when they engage in complex formation during the activation process. Cesium ion‐mediated activated carbon is reported as replacement for conventional potassium ion‐mediated activated carbon. The high affinity of the carbon host for cesium ions induces immense interlayer expansion of the carbon structure upon complexation, resulting in an enormous specific surface area of 3288 m2 g−1. Facile pore generation enhances the performance of Cs‐activated carbon in terms of both CO2 capture and Li‐ion storage.</description><identifier>ISSN: 2199-692X</identifier><identifier>EISSN: 2199-692X</identifier><identifier>DOI: 10.1002/cnma.202000541</identifier><language>eng</language><subject>activated carbon ; CO2 capture ; graphite intercalation compounds ; Li-ion storage</subject><ispartof>ChemNanoMat : chemistry of nanomaterials for energy, biology and more, 2021-02, Vol.7 (2), p.150-157</ispartof><rights>2020 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-0580-3331 ; 0000-0002-0578-5826 ; 0000-0001-8783-0901</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcnma.202000541$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcnma.202000541$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27922,27923,45572,45573</link.rule.ids></links><search><creatorcontrib>Lee, Hyeon Jeong</creatorcontrib><creatorcontrib>Ko, Dongah</creatorcontrib><creatorcontrib>Kim, Joo‐Seong</creatorcontrib><creatorcontrib>Park, Youngbin</creatorcontrib><creatorcontrib>Hwang, Insu</creatorcontrib><creatorcontrib>Yavuz, Cafer T.</creatorcontrib><creatorcontrib>Choi, Jang Wook</creatorcontrib><title>Cesium Ion‐Mediated Microporous Carbon for CO2 Capture and Lithium‐Ion Storage</title><title>ChemNanoMat : chemistry of nanomaterials for energy, biology and more</title><description>Activated carbon has been used in a wide range of applications owing to its large specific area, facile synthesis, and low cost. The synthesis of activated carbon mostly relies on potassium hydroxide (KOH)‐mediated activation which leads to the formation of micropores (&lt;2 nm) after a washing step with acid. Here we report the preparation of activated carbon with an anomalously large surface area (3288 m2 g−1), obtained by employing an activation process mediated by cesium (Cs) ions. The high affinity of the carbon lattice for Cs ions induces immense interlayer expansion upon complexation of the intercalant Cs ion with the carbon host. Furthermore, the Cs‐activation process maintains the nitrogen content of the carbon source by enabling the activation process at low temperature. The large surface area and well‐preserved nitrogen content of Cs‐activated carbon takes advantage of its enhanced interaction with CO2 molecules (for superior CO2 capture) and lithium ions (for improved Li ion storage), respectively. The present investigation unveils a new approach toward tuning the key structural properties of activated carbon; that is, controlling the affinity of the carbon host for the intercalant ion when they engage in complex formation during the activation process. Cesium ion‐mediated activated carbon is reported as replacement for conventional potassium ion‐mediated activated carbon. The high affinity of the carbon host for cesium ions induces immense interlayer expansion of the carbon structure upon complexation, resulting in an enormous specific surface area of 3288 m2 g−1. Facile pore generation enhances the performance of Cs‐activated carbon in terms of both CO2 capture and Li‐ion storage.</description><subject>activated carbon</subject><subject>CO2 capture</subject><subject>graphite intercalation compounds</subject><subject>Li-ion storage</subject><issn>2199-692X</issn><issn>2199-692X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpNkMtOwzAQRS0EElXplrV_IGXGzqNeVhGPSgmVeEjsLDt2IKiJIycR6o5P4Bv5ElyBKlYzV3fOLA4hlwhLBGBXVdeqJQMGAEmMJ2TGUIgoFezl9N9-ThbD8B5ucBUnCHxGHnI7NFNLN677_vwqrWnUaA0tm8q73nk3DTRXXruO1s7TfMtC7MfJW6o6Q4tmfAt0IANPH0fn1au9IGe12g128Tfn5Pnm-im_i4rt7SZfF9HAIMHIgFYcWWpWmaorq2oQla0hRlEJoTPD4xpsqK1RQjBIRYJZpTMUsUbFNeNzIn7_fjQ7u5e9b1rl9xJBHozIgxF5NCLz-3J9TPwH1KRZSw</recordid><startdate>202102</startdate><enddate>202102</enddate><creator>Lee, Hyeon Jeong</creator><creator>Ko, Dongah</creator><creator>Kim, Joo‐Seong</creator><creator>Park, Youngbin</creator><creator>Hwang, Insu</creator><creator>Yavuz, Cafer T.</creator><creator>Choi, Jang Wook</creator><scope/><orcidid>https://orcid.org/0000-0003-0580-3331</orcidid><orcidid>https://orcid.org/0000-0002-0578-5826</orcidid><orcidid>https://orcid.org/0000-0001-8783-0901</orcidid></search><sort><creationdate>202102</creationdate><title>Cesium Ion‐Mediated Microporous Carbon for CO2 Capture and Lithium‐Ion Storage</title><author>Lee, Hyeon Jeong ; Ko, Dongah ; Kim, Joo‐Seong ; Park, Youngbin ; Hwang, Insu ; Yavuz, Cafer T. ; Choi, Jang Wook</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-s2051-d0ba3126d87afceaf09cef0419c99b7d34f0e26deda992069517cb7194b1a3b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>activated carbon</topic><topic>CO2 capture</topic><topic>graphite intercalation compounds</topic><topic>Li-ion storage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Hyeon Jeong</creatorcontrib><creatorcontrib>Ko, Dongah</creatorcontrib><creatorcontrib>Kim, Joo‐Seong</creatorcontrib><creatorcontrib>Park, Youngbin</creatorcontrib><creatorcontrib>Hwang, Insu</creatorcontrib><creatorcontrib>Yavuz, Cafer T.</creatorcontrib><creatorcontrib>Choi, Jang Wook</creatorcontrib><jtitle>ChemNanoMat : chemistry of nanomaterials for energy, biology and more</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Hyeon Jeong</au><au>Ko, Dongah</au><au>Kim, Joo‐Seong</au><au>Park, Youngbin</au><au>Hwang, Insu</au><au>Yavuz, Cafer T.</au><au>Choi, Jang Wook</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cesium Ion‐Mediated Microporous Carbon for CO2 Capture and Lithium‐Ion Storage</atitle><jtitle>ChemNanoMat : chemistry of nanomaterials for energy, biology and more</jtitle><date>2021-02</date><risdate>2021</risdate><volume>7</volume><issue>2</issue><spage>150</spage><epage>157</epage><pages>150-157</pages><issn>2199-692X</issn><eissn>2199-692X</eissn><abstract>Activated carbon has been used in a wide range of applications owing to its large specific area, facile synthesis, and low cost. The synthesis of activated carbon mostly relies on potassium hydroxide (KOH)‐mediated activation which leads to the formation of micropores (&lt;2 nm) after a washing step with acid. Here we report the preparation of activated carbon with an anomalously large surface area (3288 m2 g−1), obtained by employing an activation process mediated by cesium (Cs) ions. The high affinity of the carbon lattice for Cs ions induces immense interlayer expansion upon complexation of the intercalant Cs ion with the carbon host. Furthermore, the Cs‐activation process maintains the nitrogen content of the carbon source by enabling the activation process at low temperature. The large surface area and well‐preserved nitrogen content of Cs‐activated carbon takes advantage of its enhanced interaction with CO2 molecules (for superior CO2 capture) and lithium ions (for improved Li ion storage), respectively. The present investigation unveils a new approach toward tuning the key structural properties of activated carbon; that is, controlling the affinity of the carbon host for the intercalant ion when they engage in complex formation during the activation process. Cesium ion‐mediated activated carbon is reported as replacement for conventional potassium ion‐mediated activated carbon. The high affinity of the carbon host for cesium ions induces immense interlayer expansion of the carbon structure upon complexation, resulting in an enormous specific surface area of 3288 m2 g−1. Facile pore generation enhances the performance of Cs‐activated carbon in terms of both CO2 capture and Li‐ion storage.</abstract><doi>10.1002/cnma.202000541</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-0580-3331</orcidid><orcidid>https://orcid.org/0000-0002-0578-5826</orcidid><orcidid>https://orcid.org/0000-0001-8783-0901</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2199-692X
ispartof ChemNanoMat : chemistry of nanomaterials for energy, biology and more, 2021-02, Vol.7 (2), p.150-157
issn 2199-692X
2199-692X
language eng
recordid cdi_wiley_primary_10_1002_cnma_202000541_CNMA202000541
source Wiley Online Library All Journals
subjects activated carbon
CO2 capture
graphite intercalation compounds
Li-ion storage
title Cesium Ion‐Mediated Microporous Carbon for CO2 Capture and Lithium‐Ion Storage
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T19%3A32%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cesium%20Ion%E2%80%90Mediated%20Microporous%20Carbon%20for%20CO2%20Capture%20and%20Lithium%E2%80%90Ion%20Storage&rft.jtitle=ChemNanoMat%20:%20chemistry%20of%20nanomaterials%20for%20energy,%20biology%20and%20more&rft.au=Lee,%20Hyeon%20Jeong&rft.date=2021-02&rft.volume=7&rft.issue=2&rft.spage=150&rft.epage=157&rft.pages=150-157&rft.issn=2199-692X&rft.eissn=2199-692X&rft_id=info:doi/10.1002/cnma.202000541&rft_dat=%3Cwiley%3ECNMA202000541%3C/wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true