Yolk–shell nanoarchitecture for stabilizing a Ce2S3 anode

Rare‐earth sulfides are of research interest for lithium‐ion batteries (LIBs) due to their abundant lithium intercalation sites and low redox voltage. However, their electrochemical performances are not satisfactory because of poor conductivity and volume change upon electrochemical cycling. Herein,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Carbon Energy 2021-10, Vol.3 (5), p.709-720
Hauptverfasser: Hui, Kanglong, Fu, Jipeng, Liu, Jie, Chen, Yongjin, Gao, Xiang, Gao, Tian, Wei, Qi, Li, Chengyu, Zhang, Hongjie, Tang, Mingxue
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 720
container_issue 5
container_start_page 709
container_title Carbon Energy
container_volume 3
creator Hui, Kanglong
Fu, Jipeng
Liu, Jie
Chen, Yongjin
Gao, Xiang
Gao, Tian
Wei, Qi
Li, Chengyu
Zhang, Hongjie
Tang, Mingxue
description Rare‐earth sulfides are of research interest for lithium‐ion batteries (LIBs) due to their abundant lithium intercalation sites and low redox voltage. However, their electrochemical performances are not satisfactory because of poor conductivity and volume change upon electrochemical cycling. Herein, nanoarchitectures of γ‐Ce2S3 encapsulated in a hollow mesoporous carbon nanosphere (Ce2S3@HMCS) are fabricated using the self‐template strategy combined with the in‐sphere sulfuration method and tested as an LIB anode. The void space between the Ce2S3 core and the outer layer of the carbon nanosphere has been properly designed and modulated to achieve excellent electrochemical performance in terms of electronic conductivity, reversibility, and rate capability. The reversible capacity of Ce2S3@HMCS is 2.6 times that of the pure Ce2S3 anode, which can gradually increase and maintain a capacity of 282 mAh·g−1 at a current density of 1 A·g–1, and a high Coulombic efficiency (~100%) can be achieved even after 1000 cycles. This good performance is attributed to the unique yolk–shell nanostructure with a highly crystallized and stable Ce3S2 core and volume expansion buffer space upon lithiation/delithiation. Ex situ X‐ray diffraction and nuclear magnetic resonance results indicate that the lithiation of Ce2S3@HMCS is an intercalation process. This study represents an important advancement in precise structural design with in‐sphere sulfuration and sheds light on a potential direction for high‐performance lithium storage. The Stöber sol–gel method with the in‐shell sulfuration approach crafts yolk–shell γ‐Ce2S3 in hollow mesoporous carbon nanospheres of Ce2S3@HMCS, offering enhanced electronic conductivity and voids for increasing structural stability when compared with untreated Ce2S3. The strategy of in situ fabrication of nanoarchitecture expands upon the methods available to design energy storage materials.
doi_str_mv 10.1002/cey2.130
format Article
fullrecord <record><control><sourceid>gale_wiley</sourceid><recordid>TN_cdi_wiley_primary_10_1002_cey2_130_CEY2130</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A745710223</galeid><doaj_id>oai_doaj_org_article_4fed2420ae9c43f6a26d96ff5a58b263</doaj_id><sourcerecordid>A745710223</sourcerecordid><originalsourceid>FETCH-LOGICAL-d3260-c26337fd5b4e1660924016c5fb95b8bd46d89e51821828e2b7c1b2415498d7ae3</originalsourceid><addsrcrecordid>eNqNUsuKFDEUDaLg0A74CQUupdq8K8HVUIw6MOBCXcwq5HHTk7YmGVPVSLvyH_xDv8SUPQwuTQInXM45OblchF4SvCUY0zcejnRLGH6CzqhkQ6-ZVE__uT9H5_O8x41KBoKpPkNvb8r09ffPX_MtTFOXbS62-tu0gF8OFbpYajcv1qUp_Uh519luBPqJdY0X4AV6Fu00w_kDbtCXd5efxw_99cf3V-PFdR8Ylbj37Xk2xCAcByIl1pRjIr2ITgunXOAyKA2CKNqOAuoGTxzlRHCtwmCBbdDVyTcUuzf3Nd3ZejTFJvO3UOrO2LokP4HhEQLlFFvQnrMoLZVByxiFFcqtOTbo1cnrvpZvB5gXsy-Hmlt8Q4VimijRYIO2J9bONtOUY1mq9W0HuEu-ZIip1S8GLtY20tVWnQTfwZU4-wTZw2PU1nA5CLx-vi0ypsUuqeSxHPLSpK__X9rY_QO7JTg-0gg26wCYdQBMGwAzXt7QhuwPxZWf-Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2583918558</pqid></control><display><type>article</type><title>Yolk–shell nanoarchitecture for stabilizing a Ce2S3 anode</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Access via Wiley Online Library</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Hui, Kanglong ; Fu, Jipeng ; Liu, Jie ; Chen, Yongjin ; Gao, Xiang ; Gao, Tian ; Wei, Qi ; Li, Chengyu ; Zhang, Hongjie ; Tang, Mingxue</creator><creatorcontrib>Hui, Kanglong ; Fu, Jipeng ; Liu, Jie ; Chen, Yongjin ; Gao, Xiang ; Gao, Tian ; Wei, Qi ; Li, Chengyu ; Zhang, Hongjie ; Tang, Mingxue</creatorcontrib><description>Rare‐earth sulfides are of research interest for lithium‐ion batteries (LIBs) due to their abundant lithium intercalation sites and low redox voltage. However, their electrochemical performances are not satisfactory because of poor conductivity and volume change upon electrochemical cycling. Herein, nanoarchitectures of γ‐Ce2S3 encapsulated in a hollow mesoporous carbon nanosphere (Ce2S3@HMCS) are fabricated using the self‐template strategy combined with the in‐sphere sulfuration method and tested as an LIB anode. The void space between the Ce2S3 core and the outer layer of the carbon nanosphere has been properly designed and modulated to achieve excellent electrochemical performance in terms of electronic conductivity, reversibility, and rate capability. The reversible capacity of Ce2S3@HMCS is 2.6 times that of the pure Ce2S3 anode, which can gradually increase and maintain a capacity of 282 mAh·g−1 at a current density of 1 A·g–1, and a high Coulombic efficiency (~100%) can be achieved even after 1000 cycles. This good performance is attributed to the unique yolk–shell nanostructure with a highly crystallized and stable Ce3S2 core and volume expansion buffer space upon lithiation/delithiation. Ex situ X‐ray diffraction and nuclear magnetic resonance results indicate that the lithiation of Ce2S3@HMCS is an intercalation process. This study represents an important advancement in precise structural design with in‐sphere sulfuration and sheds light on a potential direction for high‐performance lithium storage. The Stöber sol–gel method with the in‐shell sulfuration approach crafts yolk–shell γ‐Ce2S3 in hollow mesoporous carbon nanospheres of Ce2S3@HMCS, offering enhanced electronic conductivity and voids for increasing structural stability when compared with untreated Ce2S3. The strategy of in situ fabrication of nanoarchitecture expands upon the methods available to design energy storage materials.</description><identifier>ISSN: 2637-9368</identifier><identifier>EISSN: 2637-9368</identifier><identifier>DOI: 10.1002/cey2.130</identifier><language>eng</language><publisher>HOBOKEN: Wiley</publisher><subject>Anodes ; Batteries ; Carbon ; Ce2S3 anode ; Chemistry ; Chemistry, Physical ; Conductivity ; Crystallization ; Electrochemical analysis ; Electrochemistry ; Energy &amp; Fuels ; Energy storage ; Ethanol ; Ethylene glycol ; Formaldehyde ; Intercalation ; intercalation mechanism ; Lithium ; Lithium-ion batteries ; Materials Science ; Materials Science, Multidisciplinary ; Microscopy ; Nanoparticles ; Nanoscience &amp; Nanotechnology ; Nanospheres ; NMR ; Nuclear magnetic resonance ; Physical Sciences ; Science &amp; Technology ; Science &amp; Technology - Other Topics ; Sodium ; Spheres ; Structural design ; Structural engineering ; structure stabilizing ; Sulfide compounds ; Sulfides ; Technology ; Void space ; yolk–shell nanoarchitecture</subject><ispartof>Carbon Energy, 2021-10, Vol.3 (5), p.709-720</ispartof><rights>2021 The Authors. published by Wenzhou University and John Wiley &amp; Sons Australia, Ltd.</rights><rights>COPYRIGHT 2021 John Wiley &amp; Sons, Inc.</rights><rights>2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>25</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000675016600001</woscitedreferencesoriginalsourcerecordid><cites>FETCH-LOGICAL-d3260-c26337fd5b4e1660924016c5fb95b8bd46d89e51821828e2b7c1b2415498d7ae3</cites><orcidid>0000-0003-2909-0241</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcey2.130$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcey2.130$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,865,1418,2103,2115,27929,27930,39263,45579,45580</link.rule.ids></links><search><creatorcontrib>Hui, Kanglong</creatorcontrib><creatorcontrib>Fu, Jipeng</creatorcontrib><creatorcontrib>Liu, Jie</creatorcontrib><creatorcontrib>Chen, Yongjin</creatorcontrib><creatorcontrib>Gao, Xiang</creatorcontrib><creatorcontrib>Gao, Tian</creatorcontrib><creatorcontrib>Wei, Qi</creatorcontrib><creatorcontrib>Li, Chengyu</creatorcontrib><creatorcontrib>Zhang, Hongjie</creatorcontrib><creatorcontrib>Tang, Mingxue</creatorcontrib><title>Yolk–shell nanoarchitecture for stabilizing a Ce2S3 anode</title><title>Carbon Energy</title><addtitle>CARBON ENERGY</addtitle><description>Rare‐earth sulfides are of research interest for lithium‐ion batteries (LIBs) due to their abundant lithium intercalation sites and low redox voltage. However, their electrochemical performances are not satisfactory because of poor conductivity and volume change upon electrochemical cycling. Herein, nanoarchitectures of γ‐Ce2S3 encapsulated in a hollow mesoporous carbon nanosphere (Ce2S3@HMCS) are fabricated using the self‐template strategy combined with the in‐sphere sulfuration method and tested as an LIB anode. The void space between the Ce2S3 core and the outer layer of the carbon nanosphere has been properly designed and modulated to achieve excellent electrochemical performance in terms of electronic conductivity, reversibility, and rate capability. The reversible capacity of Ce2S3@HMCS is 2.6 times that of the pure Ce2S3 anode, which can gradually increase and maintain a capacity of 282 mAh·g−1 at a current density of 1 A·g–1, and a high Coulombic efficiency (~100%) can be achieved even after 1000 cycles. This good performance is attributed to the unique yolk–shell nanostructure with a highly crystallized and stable Ce3S2 core and volume expansion buffer space upon lithiation/delithiation. Ex situ X‐ray diffraction and nuclear magnetic resonance results indicate that the lithiation of Ce2S3@HMCS is an intercalation process. This study represents an important advancement in precise structural design with in‐sphere sulfuration and sheds light on a potential direction for high‐performance lithium storage. The Stöber sol–gel method with the in‐shell sulfuration approach crafts yolk–shell γ‐Ce2S3 in hollow mesoporous carbon nanospheres of Ce2S3@HMCS, offering enhanced electronic conductivity and voids for increasing structural stability when compared with untreated Ce2S3. The strategy of in situ fabrication of nanoarchitecture expands upon the methods available to design energy storage materials.</description><subject>Anodes</subject><subject>Batteries</subject><subject>Carbon</subject><subject>Ce2S3 anode</subject><subject>Chemistry</subject><subject>Chemistry, Physical</subject><subject>Conductivity</subject><subject>Crystallization</subject><subject>Electrochemical analysis</subject><subject>Electrochemistry</subject><subject>Energy &amp; Fuels</subject><subject>Energy storage</subject><subject>Ethanol</subject><subject>Ethylene glycol</subject><subject>Formaldehyde</subject><subject>Intercalation</subject><subject>intercalation mechanism</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>Microscopy</subject><subject>Nanoparticles</subject><subject>Nanoscience &amp; Nanotechnology</subject><subject>Nanospheres</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Physical Sciences</subject><subject>Science &amp; Technology</subject><subject>Science &amp; Technology - Other Topics</subject><subject>Sodium</subject><subject>Spheres</subject><subject>Structural design</subject><subject>Structural engineering</subject><subject>structure stabilizing</subject><subject>Sulfide compounds</subject><subject>Sulfides</subject><subject>Technology</subject><subject>Void space</subject><subject>yolk–shell nanoarchitecture</subject><issn>2637-9368</issn><issn>2637-9368</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>HGBXW</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNUsuKFDEUDaLg0A74CQUupdq8K8HVUIw6MOBCXcwq5HHTk7YmGVPVSLvyH_xDv8SUPQwuTQInXM45OblchF4SvCUY0zcejnRLGH6CzqhkQ6-ZVE__uT9H5_O8x41KBoKpPkNvb8r09ffPX_MtTFOXbS62-tu0gF8OFbpYajcv1qUp_Uh519luBPqJdY0X4AV6Fu00w_kDbtCXd5efxw_99cf3V-PFdR8Ylbj37Xk2xCAcByIl1pRjIr2ITgunXOAyKA2CKNqOAuoGTxzlRHCtwmCBbdDVyTcUuzf3Nd3ZejTFJvO3UOrO2LokP4HhEQLlFFvQnrMoLZVByxiFFcqtOTbo1cnrvpZvB5gXsy-Hmlt8Q4VimijRYIO2J9bONtOUY1mq9W0HuEu-ZIip1S8GLtY20tVWnQTfwZU4-wTZw2PU1nA5CLx-vi0ypsUuqeSxHPLSpK__X9rY_QO7JTg-0gg26wCYdQBMGwAzXt7QhuwPxZWf-Q</recordid><startdate>202110</startdate><enddate>202110</enddate><creator>Hui, Kanglong</creator><creator>Fu, Jipeng</creator><creator>Liu, Jie</creator><creator>Chen, Yongjin</creator><creator>Gao, Xiang</creator><creator>Gao, Tian</creator><creator>Wei, Qi</creator><creator>Li, Chengyu</creator><creator>Zhang, Hongjie</creator><creator>Tang, Mingxue</creator><general>Wiley</general><general>John Wiley &amp; Sons, Inc</general><scope>24P</scope><scope>WIN</scope><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>IAO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2909-0241</orcidid></search><sort><creationdate>202110</creationdate><title>Yolk–shell nanoarchitecture for stabilizing a Ce2S3 anode</title><author>Hui, Kanglong ; Fu, Jipeng ; Liu, Jie ; Chen, Yongjin ; Gao, Xiang ; Gao, Tian ; Wei, Qi ; Li, Chengyu ; Zhang, Hongjie ; Tang, Mingxue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d3260-c26337fd5b4e1660924016c5fb95b8bd46d89e51821828e2b7c1b2415498d7ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Anodes</topic><topic>Batteries</topic><topic>Carbon</topic><topic>Ce2S3 anode</topic><topic>Chemistry</topic><topic>Chemistry, Physical</topic><topic>Conductivity</topic><topic>Crystallization</topic><topic>Electrochemical analysis</topic><topic>Electrochemistry</topic><topic>Energy &amp; Fuels</topic><topic>Energy storage</topic><topic>Ethanol</topic><topic>Ethylene glycol</topic><topic>Formaldehyde</topic><topic>Intercalation</topic><topic>intercalation mechanism</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>Microscopy</topic><topic>Nanoparticles</topic><topic>Nanoscience &amp; Nanotechnology</topic><topic>Nanospheres</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Physical Sciences</topic><topic>Science &amp; Technology</topic><topic>Science &amp; Technology - Other Topics</topic><topic>Sodium</topic><topic>Spheres</topic><topic>Structural design</topic><topic>Structural engineering</topic><topic>structure stabilizing</topic><topic>Sulfide compounds</topic><topic>Sulfides</topic><topic>Technology</topic><topic>Void space</topic><topic>yolk–shell nanoarchitecture</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hui, Kanglong</creatorcontrib><creatorcontrib>Fu, Jipeng</creatorcontrib><creatorcontrib>Liu, Jie</creatorcontrib><creatorcontrib>Chen, Yongjin</creatorcontrib><creatorcontrib>Gao, Xiang</creatorcontrib><creatorcontrib>Gao, Tian</creatorcontrib><creatorcontrib>Wei, Qi</creatorcontrib><creatorcontrib>Li, Chengyu</creatorcontrib><creatorcontrib>Zhang, Hongjie</creatorcontrib><creatorcontrib>Tang, Mingxue</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>Gale Academic OneFile</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>Proquest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Carbon Energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hui, Kanglong</au><au>Fu, Jipeng</au><au>Liu, Jie</au><au>Chen, Yongjin</au><au>Gao, Xiang</au><au>Gao, Tian</au><au>Wei, Qi</au><au>Li, Chengyu</au><au>Zhang, Hongjie</au><au>Tang, Mingxue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Yolk–shell nanoarchitecture for stabilizing a Ce2S3 anode</atitle><jtitle>Carbon Energy</jtitle><stitle>CARBON ENERGY</stitle><date>2021-10</date><risdate>2021</risdate><volume>3</volume><issue>5</issue><spage>709</spage><epage>720</epage><pages>709-720</pages><issn>2637-9368</issn><eissn>2637-9368</eissn><abstract>Rare‐earth sulfides are of research interest for lithium‐ion batteries (LIBs) due to their abundant lithium intercalation sites and low redox voltage. However, their electrochemical performances are not satisfactory because of poor conductivity and volume change upon electrochemical cycling. Herein, nanoarchitectures of γ‐Ce2S3 encapsulated in a hollow mesoporous carbon nanosphere (Ce2S3@HMCS) are fabricated using the self‐template strategy combined with the in‐sphere sulfuration method and tested as an LIB anode. The void space between the Ce2S3 core and the outer layer of the carbon nanosphere has been properly designed and modulated to achieve excellent electrochemical performance in terms of electronic conductivity, reversibility, and rate capability. The reversible capacity of Ce2S3@HMCS is 2.6 times that of the pure Ce2S3 anode, which can gradually increase and maintain a capacity of 282 mAh·g−1 at a current density of 1 A·g–1, and a high Coulombic efficiency (~100%) can be achieved even after 1000 cycles. This good performance is attributed to the unique yolk–shell nanostructure with a highly crystallized and stable Ce3S2 core and volume expansion buffer space upon lithiation/delithiation. Ex situ X‐ray diffraction and nuclear magnetic resonance results indicate that the lithiation of Ce2S3@HMCS is an intercalation process. This study represents an important advancement in precise structural design with in‐sphere sulfuration and sheds light on a potential direction for high‐performance lithium storage. The Stöber sol–gel method with the in‐shell sulfuration approach crafts yolk–shell γ‐Ce2S3 in hollow mesoporous carbon nanospheres of Ce2S3@HMCS, offering enhanced electronic conductivity and voids for increasing structural stability when compared with untreated Ce2S3. The strategy of in situ fabrication of nanoarchitecture expands upon the methods available to design energy storage materials.</abstract><cop>HOBOKEN</cop><pub>Wiley</pub><doi>10.1002/cey2.130</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-2909-0241</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2637-9368
ispartof Carbon Energy, 2021-10, Vol.3 (5), p.709-720
issn 2637-9368
2637-9368
language eng
recordid cdi_wiley_primary_10_1002_cey2_130_CEY2130
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Access via Wiley Online Library; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Anodes
Batteries
Carbon
Ce2S3 anode
Chemistry
Chemistry, Physical
Conductivity
Crystallization
Electrochemical analysis
Electrochemistry
Energy & Fuels
Energy storage
Ethanol
Ethylene glycol
Formaldehyde
Intercalation
intercalation mechanism
Lithium
Lithium-ion batteries
Materials Science
Materials Science, Multidisciplinary
Microscopy
Nanoparticles
Nanoscience & Nanotechnology
Nanospheres
NMR
Nuclear magnetic resonance
Physical Sciences
Science & Technology
Science & Technology - Other Topics
Sodium
Spheres
Structural design
Structural engineering
structure stabilizing
Sulfide compounds
Sulfides
Technology
Void space
yolk–shell nanoarchitecture
title Yolk–shell nanoarchitecture for stabilizing a Ce2S3 anode
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T02%3A01%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Yolk%E2%80%93shell%20nanoarchitecture%20for%20stabilizing%20a%20Ce2S3%20anode&rft.jtitle=Carbon%20Energy&rft.au=Hui,%20Kanglong&rft.date=2021-10&rft.volume=3&rft.issue=5&rft.spage=709&rft.epage=720&rft.pages=709-720&rft.issn=2637-9368&rft.eissn=2637-9368&rft_id=info:doi/10.1002/cey2.130&rft_dat=%3Cgale_wiley%3EA745710223%3C/gale_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2583918558&rft_id=info:pmid/&rft_galeid=A745710223&rft_doaj_id=oai_doaj_org_article_4fed2420ae9c43f6a26d96ff5a58b263&rfr_iscdi=true