LTA/Poly(1-trimethylsilyl-1-propyne) Mixed-Matrix Membranes for High-Temperature CO2/N2 Separation

Mixed‐matrix membranes (MMM) consisting of poly(1‐trimethylsilyl‐1‐propyne) (PTMSP) as continuous matrix and small‐pore LTA‐framework zeolites with Si/Al ratios from 1 (commercial zeolite A) to ∞ (ITQ‐29) as dispersed phase were prepared by solution casting. The thermal stability of the MMM is as hi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical engineering & technology 2015-04, Vol.38 (4), p.658-666
Hauptverfasser: Fernández-Barquín, Ana, Casado-Coterillo, Clara, Palomino, Miguel, Valencia, Susana, Irabien, Angel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 666
container_issue 4
container_start_page 658
container_title Chemical engineering & technology
container_volume 38
creator Fernández-Barquín, Ana
Casado-Coterillo, Clara
Palomino, Miguel
Valencia, Susana
Irabien, Angel
description Mixed‐matrix membranes (MMM) consisting of poly(1‐trimethylsilyl‐1‐propyne) (PTMSP) as continuous matrix and small‐pore LTA‐framework zeolites with Si/Al ratios from 1 (commercial zeolite A) to ∞ (ITQ‐29) as dispersed phase were prepared by solution casting. The thermal stability of the MMM is as high as that of glassy PTMSP polymer, whose high permeability is maintained even at increasing temperature. The effect of the Si/Al ratio in the zeolite fillers on the membrane performance is observed by the increasing CO2/N2 permselectivity of low‐Si/Al ratio zeolite A‐based membranes, in comparison with pure silica ITQ‐29. The performance of the LTA‐type zeolite‐PTMSP MMM was adjusted to the modified Maxwell model by estimating the chain immobilization factor and the interphase thickness as a function of temperature, Si/Al ratio, and zeolite loading. Membrane gas separation is a simple and energy‐conservative technology for post‐combustion carbon capture. Here, mixed‐matrix membranes were prepared using the highly permeable poly(1‐trimethylsilyl‐1‐propyne) polymer and small‐pore LTA‐type zeolites by the solution casting method and the performance of the mixed‐matrix membranes was adjusted to the modified Maxwell model.
doi_str_mv 10.1002/ceat.201400641
format Article
fullrecord <record><control><sourceid>istex_wiley</sourceid><recordid>TN_cdi_wiley_primary_10_1002_ceat_201400641_CEAT201400641</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_WG15NF41_X</sourcerecordid><originalsourceid>FETCH-LOGICAL-g3201-e6795b14eb47b19f68c390136c334ad7293d4a453af9de1eda3e3cd23fa9f6563</originalsourceid><addsrcrecordid>eNo9kM1Lw0AQxRdRsFavnnPUw7Y7-5GYYwltKvRDMFJvyyaZtNG0CZuIzX_vlkpPwxveb5j3CHkENgLG-DhD0404A8mYL-GKDEBxoBK4uiYDFgpGAwX-Lblr2y_GGDgxIOkimYzf6qp_AtrZco_drq_asuorCrSxddMf8NlblkfM6dI4x9Fb4j615oCtV9TWm5fbHU1w36A13Y9FL1rz8Yp779gYtynrwz25KUzV4sP_HJKP2TSJ5nSxjl-jyYJuhfuaoh-EKgWJqQxSCAv_JRMhA-FnQkiTBzwUuTRSCVOEOQLmRqDIci4K48zKF0MSnu_-lhX2unFpjO01MH2qR5_q0Zd6dDSdJBflWHpmy7bD44U19lv7gQiU3qxivYlBrWaO_RR_r_dqcg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>LTA/Poly(1-trimethylsilyl-1-propyne) Mixed-Matrix Membranes for High-Temperature CO2/N2 Separation</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Fernández-Barquín, Ana ; Casado-Coterillo, Clara ; Palomino, Miguel ; Valencia, Susana ; Irabien, Angel</creator><creatorcontrib>Fernández-Barquín, Ana ; Casado-Coterillo, Clara ; Palomino, Miguel ; Valencia, Susana ; Irabien, Angel</creatorcontrib><description>Mixed‐matrix membranes (MMM) consisting of poly(1‐trimethylsilyl‐1‐propyne) (PTMSP) as continuous matrix and small‐pore LTA‐framework zeolites with Si/Al ratios from 1 (commercial zeolite A) to ∞ (ITQ‐29) as dispersed phase were prepared by solution casting. The thermal stability of the MMM is as high as that of glassy PTMSP polymer, whose high permeability is maintained even at increasing temperature. The effect of the Si/Al ratio in the zeolite fillers on the membrane performance is observed by the increasing CO2/N2 permselectivity of low‐Si/Al ratio zeolite A‐based membranes, in comparison with pure silica ITQ‐29. The performance of the LTA‐type zeolite‐PTMSP MMM was adjusted to the modified Maxwell model by estimating the chain immobilization factor and the interphase thickness as a function of temperature, Si/Al ratio, and zeolite loading. Membrane gas separation is a simple and energy‐conservative technology for post‐combustion carbon capture. Here, mixed‐matrix membranes were prepared using the highly permeable poly(1‐trimethylsilyl‐1‐propyne) polymer and small‐pore LTA‐type zeolites by the solution casting method and the performance of the mixed‐matrix membranes was adjusted to the modified Maxwell model.</description><identifier>ISSN: 0930-7516</identifier><identifier>EISSN: 1521-4125</identifier><identifier>DOI: 10.1002/ceat.201400641</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Gas separation ; LTA ; Mixed-matrix membranes ; Poly(1-trimethylsilyl-1-propyne) ; Thermal stability</subject><ispartof>Chemical engineering &amp; technology, 2015-04, Vol.38 (4), p.658-666</ispartof><rights>Copyright © 2015 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fceat.201400641$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fceat.201400641$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Fernández-Barquín, Ana</creatorcontrib><creatorcontrib>Casado-Coterillo, Clara</creatorcontrib><creatorcontrib>Palomino, Miguel</creatorcontrib><creatorcontrib>Valencia, Susana</creatorcontrib><creatorcontrib>Irabien, Angel</creatorcontrib><title>LTA/Poly(1-trimethylsilyl-1-propyne) Mixed-Matrix Membranes for High-Temperature CO2/N2 Separation</title><title>Chemical engineering &amp; technology</title><addtitle>Chem. Eng. Technol</addtitle><description>Mixed‐matrix membranes (MMM) consisting of poly(1‐trimethylsilyl‐1‐propyne) (PTMSP) as continuous matrix and small‐pore LTA‐framework zeolites with Si/Al ratios from 1 (commercial zeolite A) to ∞ (ITQ‐29) as dispersed phase were prepared by solution casting. The thermal stability of the MMM is as high as that of glassy PTMSP polymer, whose high permeability is maintained even at increasing temperature. The effect of the Si/Al ratio in the zeolite fillers on the membrane performance is observed by the increasing CO2/N2 permselectivity of low‐Si/Al ratio zeolite A‐based membranes, in comparison with pure silica ITQ‐29. The performance of the LTA‐type zeolite‐PTMSP MMM was adjusted to the modified Maxwell model by estimating the chain immobilization factor and the interphase thickness as a function of temperature, Si/Al ratio, and zeolite loading. Membrane gas separation is a simple and energy‐conservative technology for post‐combustion carbon capture. Here, mixed‐matrix membranes were prepared using the highly permeable poly(1‐trimethylsilyl‐1‐propyne) polymer and small‐pore LTA‐type zeolites by the solution casting method and the performance of the mixed‐matrix membranes was adjusted to the modified Maxwell model.</description><subject>Gas separation</subject><subject>LTA</subject><subject>Mixed-matrix membranes</subject><subject>Poly(1-trimethylsilyl-1-propyne)</subject><subject>Thermal stability</subject><issn>0930-7516</issn><issn>1521-4125</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNo9kM1Lw0AQxRdRsFavnnPUw7Y7-5GYYwltKvRDMFJvyyaZtNG0CZuIzX_vlkpPwxveb5j3CHkENgLG-DhD0404A8mYL-GKDEBxoBK4uiYDFgpGAwX-Lblr2y_GGDgxIOkimYzf6qp_AtrZco_drq_asuorCrSxddMf8NlblkfM6dI4x9Fb4j615oCtV9TWm5fbHU1w36A13Y9FL1rz8Yp779gYtynrwz25KUzV4sP_HJKP2TSJ5nSxjl-jyYJuhfuaoh-EKgWJqQxSCAv_JRMhA-FnQkiTBzwUuTRSCVOEOQLmRqDIci4K48zKF0MSnu_-lhX2unFpjO01MH2qR5_q0Zd6dDSdJBflWHpmy7bD44U19lv7gQiU3qxivYlBrWaO_RR_r_dqcg</recordid><startdate>201504</startdate><enddate>201504</enddate><creator>Fernández-Barquín, Ana</creator><creator>Casado-Coterillo, Clara</creator><creator>Palomino, Miguel</creator><creator>Valencia, Susana</creator><creator>Irabien, Angel</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>BSCLL</scope></search><sort><creationdate>201504</creationdate><title>LTA/Poly(1-trimethylsilyl-1-propyne) Mixed-Matrix Membranes for High-Temperature CO2/N2 Separation</title><author>Fernández-Barquín, Ana ; Casado-Coterillo, Clara ; Palomino, Miguel ; Valencia, Susana ; Irabien, Angel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g3201-e6795b14eb47b19f68c390136c334ad7293d4a453af9de1eda3e3cd23fa9f6563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Gas separation</topic><topic>LTA</topic><topic>Mixed-matrix membranes</topic><topic>Poly(1-trimethylsilyl-1-propyne)</topic><topic>Thermal stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fernández-Barquín, Ana</creatorcontrib><creatorcontrib>Casado-Coterillo, Clara</creatorcontrib><creatorcontrib>Palomino, Miguel</creatorcontrib><creatorcontrib>Valencia, Susana</creatorcontrib><creatorcontrib>Irabien, Angel</creatorcontrib><collection>Istex</collection><jtitle>Chemical engineering &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fernández-Barquín, Ana</au><au>Casado-Coterillo, Clara</au><au>Palomino, Miguel</au><au>Valencia, Susana</au><au>Irabien, Angel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LTA/Poly(1-trimethylsilyl-1-propyne) Mixed-Matrix Membranes for High-Temperature CO2/N2 Separation</atitle><jtitle>Chemical engineering &amp; technology</jtitle><addtitle>Chem. Eng. Technol</addtitle><date>2015-04</date><risdate>2015</risdate><volume>38</volume><issue>4</issue><spage>658</spage><epage>666</epage><pages>658-666</pages><issn>0930-7516</issn><eissn>1521-4125</eissn><abstract>Mixed‐matrix membranes (MMM) consisting of poly(1‐trimethylsilyl‐1‐propyne) (PTMSP) as continuous matrix and small‐pore LTA‐framework zeolites with Si/Al ratios from 1 (commercial zeolite A) to ∞ (ITQ‐29) as dispersed phase were prepared by solution casting. The thermal stability of the MMM is as high as that of glassy PTMSP polymer, whose high permeability is maintained even at increasing temperature. The effect of the Si/Al ratio in the zeolite fillers on the membrane performance is observed by the increasing CO2/N2 permselectivity of low‐Si/Al ratio zeolite A‐based membranes, in comparison with pure silica ITQ‐29. The performance of the LTA‐type zeolite‐PTMSP MMM was adjusted to the modified Maxwell model by estimating the chain immobilization factor and the interphase thickness as a function of temperature, Si/Al ratio, and zeolite loading. Membrane gas separation is a simple and energy‐conservative technology for post‐combustion carbon capture. Here, mixed‐matrix membranes were prepared using the highly permeable poly(1‐trimethylsilyl‐1‐propyne) polymer and small‐pore LTA‐type zeolites by the solution casting method and the performance of the mixed‐matrix membranes was adjusted to the modified Maxwell model.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/ceat.201400641</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0930-7516
ispartof Chemical engineering & technology, 2015-04, Vol.38 (4), p.658-666
issn 0930-7516
1521-4125
language eng
recordid cdi_wiley_primary_10_1002_ceat_201400641_CEAT201400641
source Wiley Online Library - AutoHoldings Journals
subjects Gas separation
LTA
Mixed-matrix membranes
Poly(1-trimethylsilyl-1-propyne)
Thermal stability
title LTA/Poly(1-trimethylsilyl-1-propyne) Mixed-Matrix Membranes for High-Temperature CO2/N2 Separation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T10%3A12%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LTA/Poly(1-trimethylsilyl-1-propyne)%20Mixed-Matrix%20Membranes%20for%20High-Temperature%20CO2/N2%20Separation&rft.jtitle=Chemical%20engineering%20&%20technology&rft.au=Fern%C3%A1ndez-Barqu%C3%ADn,%20Ana&rft.date=2015-04&rft.volume=38&rft.issue=4&rft.spage=658&rft.epage=666&rft.pages=658-666&rft.issn=0930-7516&rft.eissn=1521-4125&rft_id=info:doi/10.1002/ceat.201400641&rft_dat=%3Cistex_wiley%3Eark_67375_WNG_WG15NF41_X%3C/istex_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true