Direct Observation of the Self‐Aggregation of R3R4 Bi‐repeat of Tau Protein

: Different cryo‐EM derived atomic models of in vivo tau filaments from patients with tauopathies consisted of R3 and R4 repeats of the microtubule‐binding domain. In comparison, only the R3 repeat forms the core of the heparin‐induced fibrils of the three repeat tau isoforms. For developing therape...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chembiochem : a European journal of chemical biology 2021-06, Vol.22 (12), p.2093-2097
Hauptverfasser: Jayan, Parvathy, Vahid, Arshad A., Kizhakkeduth, Safwa T., Muhammed, Shafeek O. H., Shibina, Ajmala B., Vijayan, Vinesh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2097
container_issue 12
container_start_page 2093
container_title Chembiochem : a European journal of chemical biology
container_volume 22
creator Jayan, Parvathy
Vahid, Arshad A.
Kizhakkeduth, Safwa T.
Muhammed, Shafeek O. H.
Shibina, Ajmala B.
Vijayan, Vinesh
description : Different cryo‐EM derived atomic models of in vivo tau filaments from patients with tauopathies consisted of R3 and R4 repeats of the microtubule‐binding domain. In comparison, only the R3 repeat forms the core of the heparin‐induced fibrils of the three repeat tau isoforms. For developing therapeutics, it is desirable to have an in vitro tau aggregation system producing fibrils corresponding to the disease morphology. Here we report the self‐aggregation of truncated tau segment R3R4 peptide without requiring heparin for aggregation induction. We used NMR spectroscopy and other biophysical methods to monitor the self‐aggregation of R3R4. We identified the hexapeptide region in R3 and β‐turn region in R4 as the aggregation initiating region of the protein. The solid‐state NMR of self‐aggregated R3R4 fibrils demonstrated that in addition to R3 residues, residues of R4 were also part of the fibril filaments. The presence of both R3 and R4 residues in the aggregation process and the core of fibril filaments suggest that the aggregation of R3R4 might resemble the in vivo aggregation process. Self‐aggregation of R3R4 bi‐repeat of tau is distinct from the heparin induced aggregation of the protein. Solution and solid‐state NMR spectroscopy confirm the significant role of R4 residues in the self‐aggregation.
doi_str_mv 10.1002/cbic.202100013
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_wiley_primary_10_1002_cbic_202100013_CBIC202100013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2540501521</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4103-40fbec7b39b7919f4541d3e20eed828a0141b5ca53edbe4c73f03497e4179c243</originalsourceid><addsrcrecordid>eNqNkclOwzAQhi0EoqVw5YgicUFCKd5SJ8c2rBJSEcs5it1JcZXGxU5AvfEIPCNPgrtQJC5w8jLf_2vmH4QOCe4SjOmZklp1Kab-gQnbQm3CWRKKHmPb6zunVLTQnnMTjyQ9RnZRi7GY9iiO22h4ri2oOhhKB_Y1r7WpAlME9TMED1AWn-8f_fHYwnhTuWf3PBhoX7Awg7xe_D3mTXBnTQ262kc7RV46OFifHfR0efGYXoe3w6ubtH8bKk4wCzkuJCghWSJFQpKCR5yMGFAMMIppnGPCiYxUHjEYSeBKsAIzngjgRCSKctZBJyvfmTUvDbg6m2qnoCzzCkzjMhr5WbEQhHr0-Bc6MY2tfHee4jjCJKLEU90VpaxxzkKRzaye5naeEZwtos4WUWebqL3gaG3byCmMNvh3th44XQFvIE3hlIZKwQbzJj3u10QEXvp1UPx_OtX1ciGpaaraS5O1VJcw_6PvLB3cpD9TfAH15aoT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2540501521</pqid></control><display><type>article</type><title>Direct Observation of the Self‐Aggregation of R3R4 Bi‐repeat of Tau Protein</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Jayan, Parvathy ; Vahid, Arshad A. ; Kizhakkeduth, Safwa T. ; Muhammed, Shafeek O. H. ; Shibina, Ajmala B. ; Vijayan, Vinesh</creator><creatorcontrib>Jayan, Parvathy ; Vahid, Arshad A. ; Kizhakkeduth, Safwa T. ; Muhammed, Shafeek O. H. ; Shibina, Ajmala B. ; Vijayan, Vinesh</creatorcontrib><description>: Different cryo‐EM derived atomic models of in vivo tau filaments from patients with tauopathies consisted of R3 and R4 repeats of the microtubule‐binding domain. In comparison, only the R3 repeat forms the core of the heparin‐induced fibrils of the three repeat tau isoforms. For developing therapeutics, it is desirable to have an in vitro tau aggregation system producing fibrils corresponding to the disease morphology. Here we report the self‐aggregation of truncated tau segment R3R4 peptide without requiring heparin for aggregation induction. We used NMR spectroscopy and other biophysical methods to monitor the self‐aggregation of R3R4. We identified the hexapeptide region in R3 and β‐turn region in R4 as the aggregation initiating region of the protein. The solid‐state NMR of self‐aggregated R3R4 fibrils demonstrated that in addition to R3 residues, residues of R4 were also part of the fibril filaments. The presence of both R3 and R4 residues in the aggregation process and the core of fibril filaments suggest that the aggregation of R3R4 might resemble the in vivo aggregation process. Self‐aggregation of R3R4 bi‐repeat of tau is distinct from the heparin induced aggregation of the protein. Solution and solid‐state NMR spectroscopy confirm the significant role of R4 residues in the self‐aggregation.</description><identifier>ISSN: 1439-4227</identifier><identifier>EISSN: 1439-7633</identifier><identifier>DOI: 10.1002/cbic.202100013</identifier><identifier>PMID: 33826208</identifier><language>eng</language><publisher>WEINHEIM: Wiley</publisher><subject>Agglomeration ; Alzheimer's disease ; Biochemistry &amp; Molecular Biology ; Chemistry, Medicinal ; Fibrils ; Filaments ; Heparin ; Humans ; Isoforms ; Life Sciences &amp; Biomedicine ; Magnetic resonance spectroscopy ; Microprocessors ; Monitoring methods ; Morphology ; Neurodegenerative diseases ; NMR ; NMR spectroscopy ; Nuclear magnetic resonance ; Nuclear Magnetic Resonance, Biomolecular ; Peptides - chemistry ; Peptides - metabolism ; Pharmacology &amp; Pharmacy ; Proteins ; R3R4 ; Residues ; Science &amp; Technology ; self-aggregation ; Tau ; Tau protein ; tau Proteins - chemistry ; tau Proteins - metabolism</subject><ispartof>Chembiochem : a European journal of chemical biology, 2021-06, Vol.22 (12), p.2093-2097</ispartof><rights>2021 Wiley‐VCH GmbH</rights><rights>2021 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>7</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000646331700001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c4103-40fbec7b39b7919f4541d3e20eed828a0141b5ca53edbe4c73f03497e4179c243</citedby><cites>FETCH-LOGICAL-c4103-40fbec7b39b7919f4541d3e20eed828a0141b5ca53edbe4c73f03497e4179c243</cites><orcidid>0000-0001-5483-1860</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcbic.202100013$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcbic.202100013$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27928,27929,45578,45579</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33826208$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jayan, Parvathy</creatorcontrib><creatorcontrib>Vahid, Arshad A.</creatorcontrib><creatorcontrib>Kizhakkeduth, Safwa T.</creatorcontrib><creatorcontrib>Muhammed, Shafeek O. H.</creatorcontrib><creatorcontrib>Shibina, Ajmala B.</creatorcontrib><creatorcontrib>Vijayan, Vinesh</creatorcontrib><title>Direct Observation of the Self‐Aggregation of R3R4 Bi‐repeat of Tau Protein</title><title>Chembiochem : a European journal of chemical biology</title><addtitle>CHEMBIOCHEM</addtitle><addtitle>Chembiochem</addtitle><description>: Different cryo‐EM derived atomic models of in vivo tau filaments from patients with tauopathies consisted of R3 and R4 repeats of the microtubule‐binding domain. In comparison, only the R3 repeat forms the core of the heparin‐induced fibrils of the three repeat tau isoforms. For developing therapeutics, it is desirable to have an in vitro tau aggregation system producing fibrils corresponding to the disease morphology. Here we report the self‐aggregation of truncated tau segment R3R4 peptide without requiring heparin for aggregation induction. We used NMR spectroscopy and other biophysical methods to monitor the self‐aggregation of R3R4. We identified the hexapeptide region in R3 and β‐turn region in R4 as the aggregation initiating region of the protein. The solid‐state NMR of self‐aggregated R3R4 fibrils demonstrated that in addition to R3 residues, residues of R4 were also part of the fibril filaments. The presence of both R3 and R4 residues in the aggregation process and the core of fibril filaments suggest that the aggregation of R3R4 might resemble the in vivo aggregation process. Self‐aggregation of R3R4 bi‐repeat of tau is distinct from the heparin induced aggregation of the protein. Solution and solid‐state NMR spectroscopy confirm the significant role of R4 residues in the self‐aggregation.</description><subject>Agglomeration</subject><subject>Alzheimer's disease</subject><subject>Biochemistry &amp; Molecular Biology</subject><subject>Chemistry, Medicinal</subject><subject>Fibrils</subject><subject>Filaments</subject><subject>Heparin</subject><subject>Humans</subject><subject>Isoforms</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Magnetic resonance spectroscopy</subject><subject>Microprocessors</subject><subject>Monitoring methods</subject><subject>Morphology</subject><subject>Neurodegenerative diseases</subject><subject>NMR</subject><subject>NMR spectroscopy</subject><subject>Nuclear magnetic resonance</subject><subject>Nuclear Magnetic Resonance, Biomolecular</subject><subject>Peptides - chemistry</subject><subject>Peptides - metabolism</subject><subject>Pharmacology &amp; Pharmacy</subject><subject>Proteins</subject><subject>R3R4</subject><subject>Residues</subject><subject>Science &amp; Technology</subject><subject>self-aggregation</subject><subject>Tau</subject><subject>Tau protein</subject><subject>tau Proteins - chemistry</subject><subject>tau Proteins - metabolism</subject><issn>1439-4227</issn><issn>1439-7633</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>EIF</sourceid><recordid>eNqNkclOwzAQhi0EoqVw5YgicUFCKd5SJ8c2rBJSEcs5it1JcZXGxU5AvfEIPCNPgrtQJC5w8jLf_2vmH4QOCe4SjOmZklp1Kab-gQnbQm3CWRKKHmPb6zunVLTQnnMTjyQ9RnZRi7GY9iiO22h4ri2oOhhKB_Y1r7WpAlME9TMED1AWn-8f_fHYwnhTuWf3PBhoX7Awg7xe_D3mTXBnTQ262kc7RV46OFifHfR0efGYXoe3w6ubtH8bKk4wCzkuJCghWSJFQpKCR5yMGFAMMIppnGPCiYxUHjEYSeBKsAIzngjgRCSKctZBJyvfmTUvDbg6m2qnoCzzCkzjMhr5WbEQhHr0-Bc6MY2tfHee4jjCJKLEU90VpaxxzkKRzaye5naeEZwtos4WUWebqL3gaG3byCmMNvh3th44XQFvIE3hlIZKwQbzJj3u10QEXvp1UPx_OtX1ciGpaaraS5O1VJcw_6PvLB3cpD9TfAH15aoT</recordid><startdate>20210615</startdate><enddate>20210615</enddate><creator>Jayan, Parvathy</creator><creator>Vahid, Arshad A.</creator><creator>Kizhakkeduth, Safwa T.</creator><creator>Muhammed, Shafeek O. H.</creator><creator>Shibina, Ajmala B.</creator><creator>Vijayan, Vinesh</creator><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5483-1860</orcidid></search><sort><creationdate>20210615</creationdate><title>Direct Observation of the Self‐Aggregation of R3R4 Bi‐repeat of Tau Protein</title><author>Jayan, Parvathy ; Vahid, Arshad A. ; Kizhakkeduth, Safwa T. ; Muhammed, Shafeek O. H. ; Shibina, Ajmala B. ; Vijayan, Vinesh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4103-40fbec7b39b7919f4541d3e20eed828a0141b5ca53edbe4c73f03497e4179c243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Agglomeration</topic><topic>Alzheimer's disease</topic><topic>Biochemistry &amp; Molecular Biology</topic><topic>Chemistry, Medicinal</topic><topic>Fibrils</topic><topic>Filaments</topic><topic>Heparin</topic><topic>Humans</topic><topic>Isoforms</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Magnetic resonance spectroscopy</topic><topic>Microprocessors</topic><topic>Monitoring methods</topic><topic>Morphology</topic><topic>Neurodegenerative diseases</topic><topic>NMR</topic><topic>NMR spectroscopy</topic><topic>Nuclear magnetic resonance</topic><topic>Nuclear Magnetic Resonance, Biomolecular</topic><topic>Peptides - chemistry</topic><topic>Peptides - metabolism</topic><topic>Pharmacology &amp; Pharmacy</topic><topic>Proteins</topic><topic>R3R4</topic><topic>Residues</topic><topic>Science &amp; Technology</topic><topic>self-aggregation</topic><topic>Tau</topic><topic>Tau protein</topic><topic>tau Proteins - chemistry</topic><topic>tau Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jayan, Parvathy</creatorcontrib><creatorcontrib>Vahid, Arshad A.</creatorcontrib><creatorcontrib>Kizhakkeduth, Safwa T.</creatorcontrib><creatorcontrib>Muhammed, Shafeek O. H.</creatorcontrib><creatorcontrib>Shibina, Ajmala B.</creatorcontrib><creatorcontrib>Vijayan, Vinesh</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Chembiochem : a European journal of chemical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jayan, Parvathy</au><au>Vahid, Arshad A.</au><au>Kizhakkeduth, Safwa T.</au><au>Muhammed, Shafeek O. H.</au><au>Shibina, Ajmala B.</au><au>Vijayan, Vinesh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct Observation of the Self‐Aggregation of R3R4 Bi‐repeat of Tau Protein</atitle><jtitle>Chembiochem : a European journal of chemical biology</jtitle><stitle>CHEMBIOCHEM</stitle><addtitle>Chembiochem</addtitle><date>2021-06-15</date><risdate>2021</risdate><volume>22</volume><issue>12</issue><spage>2093</spage><epage>2097</epage><pages>2093-2097</pages><issn>1439-4227</issn><eissn>1439-7633</eissn><abstract>: Different cryo‐EM derived atomic models of in vivo tau filaments from patients with tauopathies consisted of R3 and R4 repeats of the microtubule‐binding domain. In comparison, only the R3 repeat forms the core of the heparin‐induced fibrils of the three repeat tau isoforms. For developing therapeutics, it is desirable to have an in vitro tau aggregation system producing fibrils corresponding to the disease morphology. Here we report the self‐aggregation of truncated tau segment R3R4 peptide without requiring heparin for aggregation induction. We used NMR spectroscopy and other biophysical methods to monitor the self‐aggregation of R3R4. We identified the hexapeptide region in R3 and β‐turn region in R4 as the aggregation initiating region of the protein. The solid‐state NMR of self‐aggregated R3R4 fibrils demonstrated that in addition to R3 residues, residues of R4 were also part of the fibril filaments. The presence of both R3 and R4 residues in the aggregation process and the core of fibril filaments suggest that the aggregation of R3R4 might resemble the in vivo aggregation process. Self‐aggregation of R3R4 bi‐repeat of tau is distinct from the heparin induced aggregation of the protein. Solution and solid‐state NMR spectroscopy confirm the significant role of R4 residues in the self‐aggregation.</abstract><cop>WEINHEIM</cop><pub>Wiley</pub><pmid>33826208</pmid><doi>10.1002/cbic.202100013</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-5483-1860</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1439-4227
ispartof Chembiochem : a European journal of chemical biology, 2021-06, Vol.22 (12), p.2093-2097
issn 1439-4227
1439-7633
language eng
recordid cdi_wiley_primary_10_1002_cbic_202100013_CBIC202100013
source MEDLINE; Access via Wiley Online Library
subjects Agglomeration
Alzheimer's disease
Biochemistry & Molecular Biology
Chemistry, Medicinal
Fibrils
Filaments
Heparin
Humans
Isoforms
Life Sciences & Biomedicine
Magnetic resonance spectroscopy
Microprocessors
Monitoring methods
Morphology
Neurodegenerative diseases
NMR
NMR spectroscopy
Nuclear magnetic resonance
Nuclear Magnetic Resonance, Biomolecular
Peptides - chemistry
Peptides - metabolism
Pharmacology & Pharmacy
Proteins
R3R4
Residues
Science & Technology
self-aggregation
Tau
Tau protein
tau Proteins - chemistry
tau Proteins - metabolism
title Direct Observation of the Self‐Aggregation of R3R4 Bi‐repeat of Tau Protein
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T06%3A38%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct%20Observation%20of%20the%20Self%E2%80%90Aggregation%20of%20R3R4%20Bi%E2%80%90repeat%20of%20Tau%20Protein&rft.jtitle=Chembiochem%20:%20a%20European%20journal%20of%20chemical%20biology&rft.au=Jayan,%20Parvathy&rft.date=2021-06-15&rft.volume=22&rft.issue=12&rft.spage=2093&rft.epage=2097&rft.pages=2093-2097&rft.issn=1439-4227&rft.eissn=1439-7633&rft_id=info:doi/10.1002/cbic.202100013&rft_dat=%3Cproquest_wiley%3E2540501521%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2540501521&rft_id=info:pmid/33826208&rfr_iscdi=true