Direct Observation of the Self‐Aggregation of R3R4 Bi‐repeat of Tau Protein
: Different cryo‐EM derived atomic models of in vivo tau filaments from patients with tauopathies consisted of R3 and R4 repeats of the microtubule‐binding domain. In comparison, only the R3 repeat forms the core of the heparin‐induced fibrils of the three repeat tau isoforms. For developing therape...
Gespeichert in:
Veröffentlicht in: | Chembiochem : a European journal of chemical biology 2021-06, Vol.22 (12), p.2093-2097 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2097 |
---|---|
container_issue | 12 |
container_start_page | 2093 |
container_title | Chembiochem : a European journal of chemical biology |
container_volume | 22 |
creator | Jayan, Parvathy Vahid, Arshad A. Kizhakkeduth, Safwa T. Muhammed, Shafeek O. H. Shibina, Ajmala B. Vijayan, Vinesh |
description | : Different cryo‐EM derived atomic models of in vivo tau filaments from patients with tauopathies consisted of R3 and R4 repeats of the microtubule‐binding domain. In comparison, only the R3 repeat forms the core of the heparin‐induced fibrils of the three repeat tau isoforms. For developing therapeutics, it is desirable to have an in vitro tau aggregation system producing fibrils corresponding to the disease morphology. Here we report the self‐aggregation of truncated tau segment R3R4 peptide without requiring heparin for aggregation induction. We used NMR spectroscopy and other biophysical methods to monitor the self‐aggregation of R3R4. We identified the hexapeptide region in R3 and β‐turn region in R4 as the aggregation initiating region of the protein. The solid‐state NMR of self‐aggregated R3R4 fibrils demonstrated that in addition to R3 residues, residues of R4 were also part of the fibril filaments. The presence of both R3 and R4 residues in the aggregation process and the core of fibril filaments suggest that the aggregation of R3R4 might resemble the in vivo aggregation process.
Self‐aggregation of R3R4 bi‐repeat of tau is distinct from the heparin induced aggregation of the protein. Solution and solid‐state NMR spectroscopy confirm the significant role of R4 residues in the self‐aggregation. |
doi_str_mv | 10.1002/cbic.202100013 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_wiley_primary_10_1002_cbic_202100013_CBIC202100013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2540501521</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4103-40fbec7b39b7919f4541d3e20eed828a0141b5ca53edbe4c73f03497e4179c243</originalsourceid><addsrcrecordid>eNqNkclOwzAQhi0EoqVw5YgicUFCKd5SJ8c2rBJSEcs5it1JcZXGxU5AvfEIPCNPgrtQJC5w8jLf_2vmH4QOCe4SjOmZklp1Kab-gQnbQm3CWRKKHmPb6zunVLTQnnMTjyQ9RnZRi7GY9iiO22h4ri2oOhhKB_Y1r7WpAlME9TMED1AWn-8f_fHYwnhTuWf3PBhoX7Awg7xe_D3mTXBnTQ262kc7RV46OFifHfR0efGYXoe3w6ubtH8bKk4wCzkuJCghWSJFQpKCR5yMGFAMMIppnGPCiYxUHjEYSeBKsAIzngjgRCSKctZBJyvfmTUvDbg6m2qnoCzzCkzjMhr5WbEQhHr0-Bc6MY2tfHee4jjCJKLEU90VpaxxzkKRzaye5naeEZwtos4WUWebqL3gaG3byCmMNvh3th44XQFvIE3hlIZKwQbzJj3u10QEXvp1UPx_OtX1ciGpaaraS5O1VJcw_6PvLB3cpD9TfAH15aoT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2540501521</pqid></control><display><type>article</type><title>Direct Observation of the Self‐Aggregation of R3R4 Bi‐repeat of Tau Protein</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Jayan, Parvathy ; Vahid, Arshad A. ; Kizhakkeduth, Safwa T. ; Muhammed, Shafeek O. H. ; Shibina, Ajmala B. ; Vijayan, Vinesh</creator><creatorcontrib>Jayan, Parvathy ; Vahid, Arshad A. ; Kizhakkeduth, Safwa T. ; Muhammed, Shafeek O. H. ; Shibina, Ajmala B. ; Vijayan, Vinesh</creatorcontrib><description>: Different cryo‐EM derived atomic models of in vivo tau filaments from patients with tauopathies consisted of R3 and R4 repeats of the microtubule‐binding domain. In comparison, only the R3 repeat forms the core of the heparin‐induced fibrils of the three repeat tau isoforms. For developing therapeutics, it is desirable to have an in vitro tau aggregation system producing fibrils corresponding to the disease morphology. Here we report the self‐aggregation of truncated tau segment R3R4 peptide without requiring heparin for aggregation induction. We used NMR spectroscopy and other biophysical methods to monitor the self‐aggregation of R3R4. We identified the hexapeptide region in R3 and β‐turn region in R4 as the aggregation initiating region of the protein. The solid‐state NMR of self‐aggregated R3R4 fibrils demonstrated that in addition to R3 residues, residues of R4 were also part of the fibril filaments. The presence of both R3 and R4 residues in the aggregation process and the core of fibril filaments suggest that the aggregation of R3R4 might resemble the in vivo aggregation process.
Self‐aggregation of R3R4 bi‐repeat of tau is distinct from the heparin induced aggregation of the protein. Solution and solid‐state NMR spectroscopy confirm the significant role of R4 residues in the self‐aggregation.</description><identifier>ISSN: 1439-4227</identifier><identifier>EISSN: 1439-7633</identifier><identifier>DOI: 10.1002/cbic.202100013</identifier><identifier>PMID: 33826208</identifier><language>eng</language><publisher>WEINHEIM: Wiley</publisher><subject>Agglomeration ; Alzheimer's disease ; Biochemistry & Molecular Biology ; Chemistry, Medicinal ; Fibrils ; Filaments ; Heparin ; Humans ; Isoforms ; Life Sciences & Biomedicine ; Magnetic resonance spectroscopy ; Microprocessors ; Monitoring methods ; Morphology ; Neurodegenerative diseases ; NMR ; NMR spectroscopy ; Nuclear magnetic resonance ; Nuclear Magnetic Resonance, Biomolecular ; Peptides - chemistry ; Peptides - metabolism ; Pharmacology & Pharmacy ; Proteins ; R3R4 ; Residues ; Science & Technology ; self-aggregation ; Tau ; Tau protein ; tau Proteins - chemistry ; tau Proteins - metabolism</subject><ispartof>Chembiochem : a European journal of chemical biology, 2021-06, Vol.22 (12), p.2093-2097</ispartof><rights>2021 Wiley‐VCH GmbH</rights><rights>2021 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>7</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000646331700001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c4103-40fbec7b39b7919f4541d3e20eed828a0141b5ca53edbe4c73f03497e4179c243</citedby><cites>FETCH-LOGICAL-c4103-40fbec7b39b7919f4541d3e20eed828a0141b5ca53edbe4c73f03497e4179c243</cites><orcidid>0000-0001-5483-1860</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcbic.202100013$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcbic.202100013$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27928,27929,45578,45579</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33826208$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jayan, Parvathy</creatorcontrib><creatorcontrib>Vahid, Arshad A.</creatorcontrib><creatorcontrib>Kizhakkeduth, Safwa T.</creatorcontrib><creatorcontrib>Muhammed, Shafeek O. H.</creatorcontrib><creatorcontrib>Shibina, Ajmala B.</creatorcontrib><creatorcontrib>Vijayan, Vinesh</creatorcontrib><title>Direct Observation of the Self‐Aggregation of R3R4 Bi‐repeat of Tau Protein</title><title>Chembiochem : a European journal of chemical biology</title><addtitle>CHEMBIOCHEM</addtitle><addtitle>Chembiochem</addtitle><description>: Different cryo‐EM derived atomic models of in vivo tau filaments from patients with tauopathies consisted of R3 and R4 repeats of the microtubule‐binding domain. In comparison, only the R3 repeat forms the core of the heparin‐induced fibrils of the three repeat tau isoforms. For developing therapeutics, it is desirable to have an in vitro tau aggregation system producing fibrils corresponding to the disease morphology. Here we report the self‐aggregation of truncated tau segment R3R4 peptide without requiring heparin for aggregation induction. We used NMR spectroscopy and other biophysical methods to monitor the self‐aggregation of R3R4. We identified the hexapeptide region in R3 and β‐turn region in R4 as the aggregation initiating region of the protein. The solid‐state NMR of self‐aggregated R3R4 fibrils demonstrated that in addition to R3 residues, residues of R4 were also part of the fibril filaments. The presence of both R3 and R4 residues in the aggregation process and the core of fibril filaments suggest that the aggregation of R3R4 might resemble the in vivo aggregation process.
Self‐aggregation of R3R4 bi‐repeat of tau is distinct from the heparin induced aggregation of the protein. Solution and solid‐state NMR spectroscopy confirm the significant role of R4 residues in the self‐aggregation.</description><subject>Agglomeration</subject><subject>Alzheimer's disease</subject><subject>Biochemistry & Molecular Biology</subject><subject>Chemistry, Medicinal</subject><subject>Fibrils</subject><subject>Filaments</subject><subject>Heparin</subject><subject>Humans</subject><subject>Isoforms</subject><subject>Life Sciences & Biomedicine</subject><subject>Magnetic resonance spectroscopy</subject><subject>Microprocessors</subject><subject>Monitoring methods</subject><subject>Morphology</subject><subject>Neurodegenerative diseases</subject><subject>NMR</subject><subject>NMR spectroscopy</subject><subject>Nuclear magnetic resonance</subject><subject>Nuclear Magnetic Resonance, Biomolecular</subject><subject>Peptides - chemistry</subject><subject>Peptides - metabolism</subject><subject>Pharmacology & Pharmacy</subject><subject>Proteins</subject><subject>R3R4</subject><subject>Residues</subject><subject>Science & Technology</subject><subject>self-aggregation</subject><subject>Tau</subject><subject>Tau protein</subject><subject>tau Proteins - chemistry</subject><subject>tau Proteins - metabolism</subject><issn>1439-4227</issn><issn>1439-7633</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>EIF</sourceid><recordid>eNqNkclOwzAQhi0EoqVw5YgicUFCKd5SJ8c2rBJSEcs5it1JcZXGxU5AvfEIPCNPgrtQJC5w8jLf_2vmH4QOCe4SjOmZklp1Kab-gQnbQm3CWRKKHmPb6zunVLTQnnMTjyQ9RnZRi7GY9iiO22h4ri2oOhhKB_Y1r7WpAlME9TMED1AWn-8f_fHYwnhTuWf3PBhoX7Awg7xe_D3mTXBnTQ262kc7RV46OFifHfR0efGYXoe3w6ubtH8bKk4wCzkuJCghWSJFQpKCR5yMGFAMMIppnGPCiYxUHjEYSeBKsAIzngjgRCSKctZBJyvfmTUvDbg6m2qnoCzzCkzjMhr5WbEQhHr0-Bc6MY2tfHee4jjCJKLEU90VpaxxzkKRzaye5naeEZwtos4WUWebqL3gaG3byCmMNvh3th44XQFvIE3hlIZKwQbzJj3u10QEXvp1UPx_OtX1ciGpaaraS5O1VJcw_6PvLB3cpD9TfAH15aoT</recordid><startdate>20210615</startdate><enddate>20210615</enddate><creator>Jayan, Parvathy</creator><creator>Vahid, Arshad A.</creator><creator>Kizhakkeduth, Safwa T.</creator><creator>Muhammed, Shafeek O. H.</creator><creator>Shibina, Ajmala B.</creator><creator>Vijayan, Vinesh</creator><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5483-1860</orcidid></search><sort><creationdate>20210615</creationdate><title>Direct Observation of the Self‐Aggregation of R3R4 Bi‐repeat of Tau Protein</title><author>Jayan, Parvathy ; Vahid, Arshad A. ; Kizhakkeduth, Safwa T. ; Muhammed, Shafeek O. H. ; Shibina, Ajmala B. ; Vijayan, Vinesh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4103-40fbec7b39b7919f4541d3e20eed828a0141b5ca53edbe4c73f03497e4179c243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Agglomeration</topic><topic>Alzheimer's disease</topic><topic>Biochemistry & Molecular Biology</topic><topic>Chemistry, Medicinal</topic><topic>Fibrils</topic><topic>Filaments</topic><topic>Heparin</topic><topic>Humans</topic><topic>Isoforms</topic><topic>Life Sciences & Biomedicine</topic><topic>Magnetic resonance spectroscopy</topic><topic>Microprocessors</topic><topic>Monitoring methods</topic><topic>Morphology</topic><topic>Neurodegenerative diseases</topic><topic>NMR</topic><topic>NMR spectroscopy</topic><topic>Nuclear magnetic resonance</topic><topic>Nuclear Magnetic Resonance, Biomolecular</topic><topic>Peptides - chemistry</topic><topic>Peptides - metabolism</topic><topic>Pharmacology & Pharmacy</topic><topic>Proteins</topic><topic>R3R4</topic><topic>Residues</topic><topic>Science & Technology</topic><topic>self-aggregation</topic><topic>Tau</topic><topic>Tau protein</topic><topic>tau Proteins - chemistry</topic><topic>tau Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jayan, Parvathy</creatorcontrib><creatorcontrib>Vahid, Arshad A.</creatorcontrib><creatorcontrib>Kizhakkeduth, Safwa T.</creatorcontrib><creatorcontrib>Muhammed, Shafeek O. H.</creatorcontrib><creatorcontrib>Shibina, Ajmala B.</creatorcontrib><creatorcontrib>Vijayan, Vinesh</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Chembiochem : a European journal of chemical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jayan, Parvathy</au><au>Vahid, Arshad A.</au><au>Kizhakkeduth, Safwa T.</au><au>Muhammed, Shafeek O. H.</au><au>Shibina, Ajmala B.</au><au>Vijayan, Vinesh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct Observation of the Self‐Aggregation of R3R4 Bi‐repeat of Tau Protein</atitle><jtitle>Chembiochem : a European journal of chemical biology</jtitle><stitle>CHEMBIOCHEM</stitle><addtitle>Chembiochem</addtitle><date>2021-06-15</date><risdate>2021</risdate><volume>22</volume><issue>12</issue><spage>2093</spage><epage>2097</epage><pages>2093-2097</pages><issn>1439-4227</issn><eissn>1439-7633</eissn><abstract>: Different cryo‐EM derived atomic models of in vivo tau filaments from patients with tauopathies consisted of R3 and R4 repeats of the microtubule‐binding domain. In comparison, only the R3 repeat forms the core of the heparin‐induced fibrils of the three repeat tau isoforms. For developing therapeutics, it is desirable to have an in vitro tau aggregation system producing fibrils corresponding to the disease morphology. Here we report the self‐aggregation of truncated tau segment R3R4 peptide without requiring heparin for aggregation induction. We used NMR spectroscopy and other biophysical methods to monitor the self‐aggregation of R3R4. We identified the hexapeptide region in R3 and β‐turn region in R4 as the aggregation initiating region of the protein. The solid‐state NMR of self‐aggregated R3R4 fibrils demonstrated that in addition to R3 residues, residues of R4 were also part of the fibril filaments. The presence of both R3 and R4 residues in the aggregation process and the core of fibril filaments suggest that the aggregation of R3R4 might resemble the in vivo aggregation process.
Self‐aggregation of R3R4 bi‐repeat of tau is distinct from the heparin induced aggregation of the protein. Solution and solid‐state NMR spectroscopy confirm the significant role of R4 residues in the self‐aggregation.</abstract><cop>WEINHEIM</cop><pub>Wiley</pub><pmid>33826208</pmid><doi>10.1002/cbic.202100013</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-5483-1860</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1439-4227 |
ispartof | Chembiochem : a European journal of chemical biology, 2021-06, Vol.22 (12), p.2093-2097 |
issn | 1439-4227 1439-7633 |
language | eng |
recordid | cdi_wiley_primary_10_1002_cbic_202100013_CBIC202100013 |
source | MEDLINE; Access via Wiley Online Library |
subjects | Agglomeration Alzheimer's disease Biochemistry & Molecular Biology Chemistry, Medicinal Fibrils Filaments Heparin Humans Isoforms Life Sciences & Biomedicine Magnetic resonance spectroscopy Microprocessors Monitoring methods Morphology Neurodegenerative diseases NMR NMR spectroscopy Nuclear magnetic resonance Nuclear Magnetic Resonance, Biomolecular Peptides - chemistry Peptides - metabolism Pharmacology & Pharmacy Proteins R3R4 Residues Science & Technology self-aggregation Tau Tau protein tau Proteins - chemistry tau Proteins - metabolism |
title | Direct Observation of the Self‐Aggregation of R3R4 Bi‐repeat of Tau Protein |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T06%3A38%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct%20Observation%20of%20the%20Self%E2%80%90Aggregation%20of%20R3R4%20Bi%E2%80%90repeat%20of%20Tau%20Protein&rft.jtitle=Chembiochem%20:%20a%20European%20journal%20of%20chemical%20biology&rft.au=Jayan,%20Parvathy&rft.date=2021-06-15&rft.volume=22&rft.issue=12&rft.spage=2093&rft.epage=2097&rft.pages=2093-2097&rft.issn=1439-4227&rft.eissn=1439-7633&rft_id=info:doi/10.1002/cbic.202100013&rft_dat=%3Cproquest_wiley%3E2540501521%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2540501521&rft_id=info:pmid/33826208&rfr_iscdi=true |