NMR “Crystallography” for Uniformly (13C, 15N)‐Labeled Oriented Membrane Proteins
In oriented‐sample (OS) solid‐state NMR of membrane proteins, the angular‐dependent dipolar couplings and chemical shifts provide a direct input for structure calculations. However, so far only 1H–15N dipolar couplings and 15N chemical shifts have been routinely assessed in oriented 15N‐labeled samp...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie International Edition 2020-02, Vol.59 (9), p.3554-3557 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3557 |
---|---|
container_issue | 9 |
container_start_page | 3554 |
container_title | Angewandte Chemie International Edition |
container_volume | 59 |
creator | Awosanya, Emmanuel O. Lapin, Joel Nevzorov, Alexander A. |
description | In oriented‐sample (OS) solid‐state NMR of membrane proteins, the angular‐dependent dipolar couplings and chemical shifts provide a direct input for structure calculations. However, so far only 1H–15N dipolar couplings and 15N chemical shifts have been routinely assessed in oriented 15N‐labeled samples. The main obstacle for extending this technique to membrane proteins of arbitrary topology has remained in the lack of additional experimental restraints. We have developed a new experimental triple‐resonance NMR technique, which was applied to uniformly doubly (15N, 13C)‐labeled Pf1 coat protein in magnetically aligned DMPC/DHPC bicelles. The previously inaccessible 1Hα–13Cα dipolar couplings have been measured, which make it possible to determine the torsion angles between the peptide planes without assuming α‐helical structure a priori. The fitting of three angular restraints per peptide plane and filtering by Rosetta scoring functions has yielded a consensus α‐helical transmembrane structure for Pf1 protein.
All good things come in threes: Structural fitting of three NMR angular restraints per peptide plane (15N CSA, 1H–15N and 1Hα–13Cα dipolar couplings) can yield backbone folds of oriented membrane proteins without assuming a secondary structure a priori. A new NMR sequence allows measuring the previously inaccessible 1Hα–13Cα dipolar couplings and calculating the transmembrane structure of Pf1 coat protein in magnetically aligned bicelles. |
doi_str_mv | 10.1002/anie.201915110 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_wiley_primary_10_1002_anie_201915110_ANIE201915110</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2331622470</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4100-1d0dd3a25886c00ea2cfed955e3023fbcc3f12283b23f17f9d1824e6d3f58e333</originalsourceid><addsrcrecordid>eNqFkMtKA0EQRRtRTHxsXcqAGwUndnWlM52lhKiBPEQMLoeemRqdMI_YnSCzyyf4Afpz-RJb4gPcuChuFZy6XC5jR8BbwLm40GVGLcGhCxKAb7EmSAE-BgFuu72N6AdKQoPtWTtzvFK8s8saCEoFAlWTPYxHd9569dYztV3oPK8ejZ4_1evVu5dWxpuWmZMir71TwN65B3J8tl69DnVEOSXexGRULtwyoiIyuiTv1lQLykp7wHZSnVs6_NJ9Nr3q3_du_OHketC7HPpx2-X3IeFJglpIpTox56RFnFLSlZKQC0yjOMYUhFAYuQuCtJuAEm3qJJhKRYi4z043vnNTPS_JLsIiszHluQtTLW0oEKEjRDvgDj35g86qpSldOkdJqdxI4ajWhopNZa2hNJybrNCmDoGHn5WHn5WHP5W7h-Mv22VUUPKDf3fsgO4GeMlyqv-xCy_Hg_6v-QeOCI2M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2355835552</pqid></control><display><type>article</type><title>NMR “Crystallography” for Uniformly (13C, 15N)‐Labeled Oriented Membrane Proteins</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Awosanya, Emmanuel O. ; Lapin, Joel ; Nevzorov, Alexander A.</creator><creatorcontrib>Awosanya, Emmanuel O. ; Lapin, Joel ; Nevzorov, Alexander A.</creatorcontrib><description>In oriented‐sample (OS) solid‐state NMR of membrane proteins, the angular‐dependent dipolar couplings and chemical shifts provide a direct input for structure calculations. However, so far only 1H–15N dipolar couplings and 15N chemical shifts have been routinely assessed in oriented 15N‐labeled samples. The main obstacle for extending this technique to membrane proteins of arbitrary topology has remained in the lack of additional experimental restraints. We have developed a new experimental triple‐resonance NMR technique, which was applied to uniformly doubly (15N, 13C)‐labeled Pf1 coat protein in magnetically aligned DMPC/DHPC bicelles. The previously inaccessible 1Hα–13Cα dipolar couplings have been measured, which make it possible to determine the torsion angles between the peptide planes without assuming α‐helical structure a priori. The fitting of three angular restraints per peptide plane and filtering by Rosetta scoring functions has yielded a consensus α‐helical transmembrane structure for Pf1 protein.
All good things come in threes: Structural fitting of three NMR angular restraints per peptide plane (15N CSA, 1H–15N and 1Hα–13Cα dipolar couplings) can yield backbone folds of oriented membrane proteins without assuming a secondary structure a priori. A new NMR sequence allows measuring the previously inaccessible 1Hα–13Cα dipolar couplings and calculating the transmembrane structure of Pf1 coat protein in magnetically aligned bicelles.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.201915110</identifier><identifier>PMID: 31887238</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Carbon Isotopes - chemistry ; Coat protein ; Constraints ; Couplings ; Crystallography ; dipolar couplings ; Inovirus - metabolism ; Isotope Labeling ; Lipid Bilayers - chemistry ; Lipid Bilayers - metabolism ; Membrane proteins ; Membrane Proteins - chemistry ; Membranes ; Nitrogen isotopes ; Nitrogen Isotopes - chemistry ; NMR ; Nuclear magnetic resonance ; Nuclear Magnetic Resonance, Biomolecular ; Organic chemistry ; oriented samples ; Peptides ; Protein structure ; Proteins ; structure determination ; Topology ; Viral Proteins - chemistry</subject><ispartof>Angewandte Chemie International Edition, 2020-02, Vol.59 (9), p.3554-3557</ispartof><rights>2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><rights>2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4100-1d0dd3a25886c00ea2cfed955e3023fbcc3f12283b23f17f9d1824e6d3f58e333</citedby><cites>FETCH-LOGICAL-c4100-1d0dd3a25886c00ea2cfed955e3023fbcc3f12283b23f17f9d1824e6d3f58e333</cites><orcidid>0000-0001-9676-6139</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.201915110$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.201915110$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31887238$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Awosanya, Emmanuel O.</creatorcontrib><creatorcontrib>Lapin, Joel</creatorcontrib><creatorcontrib>Nevzorov, Alexander A.</creatorcontrib><title>NMR “Crystallography” for Uniformly (13C, 15N)‐Labeled Oriented Membrane Proteins</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>In oriented‐sample (OS) solid‐state NMR of membrane proteins, the angular‐dependent dipolar couplings and chemical shifts provide a direct input for structure calculations. However, so far only 1H–15N dipolar couplings and 15N chemical shifts have been routinely assessed in oriented 15N‐labeled samples. The main obstacle for extending this technique to membrane proteins of arbitrary topology has remained in the lack of additional experimental restraints. We have developed a new experimental triple‐resonance NMR technique, which was applied to uniformly doubly (15N, 13C)‐labeled Pf1 coat protein in magnetically aligned DMPC/DHPC bicelles. The previously inaccessible 1Hα–13Cα dipolar couplings have been measured, which make it possible to determine the torsion angles between the peptide planes without assuming α‐helical structure a priori. The fitting of three angular restraints per peptide plane and filtering by Rosetta scoring functions has yielded a consensus α‐helical transmembrane structure for Pf1 protein.
All good things come in threes: Structural fitting of three NMR angular restraints per peptide plane (15N CSA, 1H–15N and 1Hα–13Cα dipolar couplings) can yield backbone folds of oriented membrane proteins without assuming a secondary structure a priori. A new NMR sequence allows measuring the previously inaccessible 1Hα–13Cα dipolar couplings and calculating the transmembrane structure of Pf1 coat protein in magnetically aligned bicelles.</description><subject>Carbon Isotopes - chemistry</subject><subject>Coat protein</subject><subject>Constraints</subject><subject>Couplings</subject><subject>Crystallography</subject><subject>dipolar couplings</subject><subject>Inovirus - metabolism</subject><subject>Isotope Labeling</subject><subject>Lipid Bilayers - chemistry</subject><subject>Lipid Bilayers - metabolism</subject><subject>Membrane proteins</subject><subject>Membrane Proteins - chemistry</subject><subject>Membranes</subject><subject>Nitrogen isotopes</subject><subject>Nitrogen Isotopes - chemistry</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Nuclear Magnetic Resonance, Biomolecular</subject><subject>Organic chemistry</subject><subject>oriented samples</subject><subject>Peptides</subject><subject>Protein structure</subject><subject>Proteins</subject><subject>structure determination</subject><subject>Topology</subject><subject>Viral Proteins - chemistry</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkMtKA0EQRRtRTHxsXcqAGwUndnWlM52lhKiBPEQMLoeemRqdMI_YnSCzyyf4Afpz-RJb4gPcuChuFZy6XC5jR8BbwLm40GVGLcGhCxKAb7EmSAE-BgFuu72N6AdKQoPtWTtzvFK8s8saCEoFAlWTPYxHd9569dYztV3oPK8ejZ4_1evVu5dWxpuWmZMir71TwN65B3J8tl69DnVEOSXexGRULtwyoiIyuiTv1lQLykp7wHZSnVs6_NJ9Nr3q3_du_OHketC7HPpx2-X3IeFJglpIpTox56RFnFLSlZKQC0yjOMYUhFAYuQuCtJuAEm3qJJhKRYi4z043vnNTPS_JLsIiszHluQtTLW0oEKEjRDvgDj35g86qpSldOkdJqdxI4ajWhopNZa2hNJybrNCmDoGHn5WHn5WHP5W7h-Mv22VUUPKDf3fsgO4GeMlyqv-xCy_Hg_6v-QeOCI2M</recordid><startdate>20200224</startdate><enddate>20200224</enddate><creator>Awosanya, Emmanuel O.</creator><creator>Lapin, Joel</creator><creator>Nevzorov, Alexander A.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9676-6139</orcidid></search><sort><creationdate>20200224</creationdate><title>NMR “Crystallography” for Uniformly (13C, 15N)‐Labeled Oriented Membrane Proteins</title><author>Awosanya, Emmanuel O. ; Lapin, Joel ; Nevzorov, Alexander A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4100-1d0dd3a25886c00ea2cfed955e3023fbcc3f12283b23f17f9d1824e6d3f58e333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Carbon Isotopes - chemistry</topic><topic>Coat protein</topic><topic>Constraints</topic><topic>Couplings</topic><topic>Crystallography</topic><topic>dipolar couplings</topic><topic>Inovirus - metabolism</topic><topic>Isotope Labeling</topic><topic>Lipid Bilayers - chemistry</topic><topic>Lipid Bilayers - metabolism</topic><topic>Membrane proteins</topic><topic>Membrane Proteins - chemistry</topic><topic>Membranes</topic><topic>Nitrogen isotopes</topic><topic>Nitrogen Isotopes - chemistry</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Nuclear Magnetic Resonance, Biomolecular</topic><topic>Organic chemistry</topic><topic>oriented samples</topic><topic>Peptides</topic><topic>Protein structure</topic><topic>Proteins</topic><topic>structure determination</topic><topic>Topology</topic><topic>Viral Proteins - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Awosanya, Emmanuel O.</creatorcontrib><creatorcontrib>Lapin, Joel</creatorcontrib><creatorcontrib>Nevzorov, Alexander A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Awosanya, Emmanuel O.</au><au>Lapin, Joel</au><au>Nevzorov, Alexander A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NMR “Crystallography” for Uniformly (13C, 15N)‐Labeled Oriented Membrane Proteins</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2020-02-24</date><risdate>2020</risdate><volume>59</volume><issue>9</issue><spage>3554</spage><epage>3557</epage><pages>3554-3557</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>In oriented‐sample (OS) solid‐state NMR of membrane proteins, the angular‐dependent dipolar couplings and chemical shifts provide a direct input for structure calculations. However, so far only 1H–15N dipolar couplings and 15N chemical shifts have been routinely assessed in oriented 15N‐labeled samples. The main obstacle for extending this technique to membrane proteins of arbitrary topology has remained in the lack of additional experimental restraints. We have developed a new experimental triple‐resonance NMR technique, which was applied to uniformly doubly (15N, 13C)‐labeled Pf1 coat protein in magnetically aligned DMPC/DHPC bicelles. The previously inaccessible 1Hα–13Cα dipolar couplings have been measured, which make it possible to determine the torsion angles between the peptide planes without assuming α‐helical structure a priori. The fitting of three angular restraints per peptide plane and filtering by Rosetta scoring functions has yielded a consensus α‐helical transmembrane structure for Pf1 protein.
All good things come in threes: Structural fitting of three NMR angular restraints per peptide plane (15N CSA, 1H–15N and 1Hα–13Cα dipolar couplings) can yield backbone folds of oriented membrane proteins without assuming a secondary structure a priori. A new NMR sequence allows measuring the previously inaccessible 1Hα–13Cα dipolar couplings and calculating the transmembrane structure of Pf1 coat protein in magnetically aligned bicelles.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31887238</pmid><doi>10.1002/anie.201915110</doi><tpages>4</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0001-9676-6139</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7851 |
ispartof | Angewandte Chemie International Edition, 2020-02, Vol.59 (9), p.3554-3557 |
issn | 1433-7851 1521-3773 |
language | eng |
recordid | cdi_wiley_primary_10_1002_anie_201915110_ANIE201915110 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Carbon Isotopes - chemistry Coat protein Constraints Couplings Crystallography dipolar couplings Inovirus - metabolism Isotope Labeling Lipid Bilayers - chemistry Lipid Bilayers - metabolism Membrane proteins Membrane Proteins - chemistry Membranes Nitrogen isotopes Nitrogen Isotopes - chemistry NMR Nuclear magnetic resonance Nuclear Magnetic Resonance, Biomolecular Organic chemistry oriented samples Peptides Protein structure Proteins structure determination Topology Viral Proteins - chemistry |
title | NMR “Crystallography” for Uniformly (13C, 15N)‐Labeled Oriented Membrane Proteins |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T16%3A18%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NMR%20%E2%80%9CCrystallography%E2%80%9D%20for%20Uniformly%20(13C,%2015N)%E2%80%90Labeled%20Oriented%20Membrane%20Proteins&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Awosanya,%20Emmanuel%20O.&rft.date=2020-02-24&rft.volume=59&rft.issue=9&rft.spage=3554&rft.epage=3557&rft.pages=3554-3557&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.201915110&rft_dat=%3Cproquest_cross%3E2331622470%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2355835552&rft_id=info:pmid/31887238&rfr_iscdi=true |