Computational Study on the Catalytic Mechanism of Oxygen Reduction on La₀.₅Sr₀.₅MnO₃ in Solid Oxide Fuel Cells

Designing better cathode materials for solid oxide fuel cells can be aided by quantum‐chemical calculations on oxygen reduction on Sr‐doped LaMnO3 surfaces (La0.5Sr0.5MnO3=LSM0.5), which show that the reaction (see energy profile [eV]) proceeds via superoxo‐ (La‐super and Mn‐super) and peroxo‐like (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie (International ed.) 2007-01, Vol.46 (38), p.7214-7219
Hauptverfasser: Choi, YongMan, Lin, M.C, Liu, Meilin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7219
container_issue 38
container_start_page 7214
container_title Angewandte Chemie (International ed.)
container_volume 46
creator Choi, YongMan
Lin, M.C
Liu, Meilin
description Designing better cathode materials for solid oxide fuel cells can be aided by quantum‐chemical calculations on oxygen reduction on Sr‐doped LaMnO3 surfaces (La0.5Sr0.5MnO3=LSM0.5), which show that the reaction (see energy profile [eV]) proceeds via superoxo‐ (La‐super and Mn‐super) and peroxo‐like (Mn‐per) intermediates, dissociation and incorporation into the bulk (La‐diss and Mn‐diss), and diffusion to a more stable site (Product). YSZ=yttria‐stabilized zirconia.
doi_str_mv 10.1002/anie.200700411
format Article
fullrecord <record><control><sourceid>istex_wiley</sourceid><recordid>TN_cdi_wiley_primary_10_1002_anie_200700411_ANIE200700411</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_3F8GNRDF_M</sourcerecordid><originalsourceid>FETCH-LOGICAL-f3741-aa7697c57f01432dde232adb9809693a853d14f83245d82202d169d1865ed0833</originalsourceid><addsrcrecordid>eNo9kEtPwkAUhSdGExHdunX-QHEebWe6JJUiCY-ESlxOxs4URoeW9BHpzmD8o_wS20BY3XOT852bewB4xGiAESLPMjN6QBBiCLkYX4Ee9gh2KGP0utUupQ7jHr4Fd2X52fo5R34P7MN8u6srWZk8kxbGVa0amGew2mgYykrapjIJnOlk08aXW5incLFv1jqDS63qpMM6-1QeDz-D4-EvLs5ili2Oh19oMhjn1qiWMkrDqNYWhtra8h7cpNKW-uE8-2AVjd7CV2e6GE_C4dRJKXOxIyXzA5Z4LEXtC0QpTSiR6iPgKPADKrlHFXZTTonrKU4IIgr7gcLc97RCnNI-CE6538bqRuwKs5VFIzASXWmiK01cShPD-WR02VrWObGmrPT-wsriS_iMMk-8z8eCRnw8X75EYtb6n07-VOZCrgtTilVMEKYIcdye8-g_0vZ-ew</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Computational Study on the Catalytic Mechanism of Oxygen Reduction on La₀.₅Sr₀.₅MnO₃ in Solid Oxide Fuel Cells</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Choi, YongMan ; Lin, M.C ; Liu, Meilin</creator><creatorcontrib>Choi, YongMan ; Lin, M.C ; Liu, Meilin</creatorcontrib><description>Designing better cathode materials for solid oxide fuel cells can be aided by quantum‐chemical calculations on oxygen reduction on Sr‐doped LaMnO3 surfaces (La0.5Sr0.5MnO3=LSM0.5), which show that the reaction (see energy profile [eV]) proceeds via superoxo‐ (La‐super and Mn‐super) and peroxo‐like (Mn‐per) intermediates, dissociation and incorporation into the bulk (La‐diss and Mn‐diss), and diffusion to a more stable site (Product). YSZ=yttria‐stabilized zirconia.</description><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.200700411</identifier><language>eng</language><publisher>Weinheim: Wiley-VCH Verlag</publisher><subject>ab initio calculations ; fuel cells ; molecular dynamics ; reaction mechanisms ; reduction</subject><ispartof>Angewandte Chemie (International ed.), 2007-01, Vol.46 (38), p.7214-7219</ispartof><rights>Copyright © 2007 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.200700411$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.200700411$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Choi, YongMan</creatorcontrib><creatorcontrib>Lin, M.C</creatorcontrib><creatorcontrib>Liu, Meilin</creatorcontrib><title>Computational Study on the Catalytic Mechanism of Oxygen Reduction on La₀.₅Sr₀.₅MnO₃ in Solid Oxide Fuel Cells</title><title>Angewandte Chemie (International ed.)</title><addtitle>Angewandte Chemie International Edition</addtitle><description>Designing better cathode materials for solid oxide fuel cells can be aided by quantum‐chemical calculations on oxygen reduction on Sr‐doped LaMnO3 surfaces (La0.5Sr0.5MnO3=LSM0.5), which show that the reaction (see energy profile [eV]) proceeds via superoxo‐ (La‐super and Mn‐super) and peroxo‐like (Mn‐per) intermediates, dissociation and incorporation into the bulk (La‐diss and Mn‐diss), and diffusion to a more stable site (Product). YSZ=yttria‐stabilized zirconia.</description><subject>ab initio calculations</subject><subject>fuel cells</subject><subject>molecular dynamics</subject><subject>reaction mechanisms</subject><subject>reduction</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNo9kEtPwkAUhSdGExHdunX-QHEebWe6JJUiCY-ESlxOxs4URoeW9BHpzmD8o_wS20BY3XOT852bewB4xGiAESLPMjN6QBBiCLkYX4Ee9gh2KGP0utUupQ7jHr4Fd2X52fo5R34P7MN8u6srWZk8kxbGVa0amGew2mgYykrapjIJnOlk08aXW5incLFv1jqDS63qpMM6-1QeDz-D4-EvLs5ili2Oh19oMhjn1qiWMkrDqNYWhtra8h7cpNKW-uE8-2AVjd7CV2e6GE_C4dRJKXOxIyXzA5Z4LEXtC0QpTSiR6iPgKPADKrlHFXZTTonrKU4IIgr7gcLc97RCnNI-CE6538bqRuwKs5VFIzASXWmiK01cShPD-WR02VrWObGmrPT-wsriS_iMMk-8z8eCRnw8X75EYtb6n07-VOZCrgtTilVMEKYIcdye8-g_0vZ-ew</recordid><startdate>20070101</startdate><enddate>20070101</enddate><creator>Choi, YongMan</creator><creator>Lin, M.C</creator><creator>Liu, Meilin</creator><general>Wiley-VCH Verlag</general><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>FBQ</scope><scope>BSCLL</scope></search><sort><creationdate>20070101</creationdate><title>Computational Study on the Catalytic Mechanism of Oxygen Reduction on La₀.₅Sr₀.₅MnO₃ in Solid Oxide Fuel Cells</title><author>Choi, YongMan ; Lin, M.C ; Liu, Meilin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-f3741-aa7697c57f01432dde232adb9809693a853d14f83245d82202d169d1865ed0833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>ab initio calculations</topic><topic>fuel cells</topic><topic>molecular dynamics</topic><topic>reaction mechanisms</topic><topic>reduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choi, YongMan</creatorcontrib><creatorcontrib>Lin, M.C</creatorcontrib><creatorcontrib>Liu, Meilin</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><jtitle>Angewandte Chemie (International ed.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choi, YongMan</au><au>Lin, M.C</au><au>Liu, Meilin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational Study on the Catalytic Mechanism of Oxygen Reduction on La₀.₅Sr₀.₅MnO₃ in Solid Oxide Fuel Cells</atitle><jtitle>Angewandte Chemie (International ed.)</jtitle><addtitle>Angewandte Chemie International Edition</addtitle><date>2007-01-01</date><risdate>2007</risdate><volume>46</volume><issue>38</issue><spage>7214</spage><epage>7219</epage><pages>7214-7219</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>Designing better cathode materials for solid oxide fuel cells can be aided by quantum‐chemical calculations on oxygen reduction on Sr‐doped LaMnO3 surfaces (La0.5Sr0.5MnO3=LSM0.5), which show that the reaction (see energy profile [eV]) proceeds via superoxo‐ (La‐super and Mn‐super) and peroxo‐like (Mn‐per) intermediates, dissociation and incorporation into the bulk (La‐diss and Mn‐diss), and diffusion to a more stable site (Product). YSZ=yttria‐stabilized zirconia.</abstract><cop>Weinheim</cop><pub>Wiley-VCH Verlag</pub><doi>10.1002/anie.200700411</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie (International ed.), 2007-01, Vol.46 (38), p.7214-7219
issn 1433-7851
1521-3773
language eng
recordid cdi_wiley_primary_10_1002_anie_200700411_ANIE200700411
source Wiley Online Library Journals Frontfile Complete
subjects ab initio calculations
fuel cells
molecular dynamics
reaction mechanisms
reduction
title Computational Study on the Catalytic Mechanism of Oxygen Reduction on La₀.₅Sr₀.₅MnO₃ in Solid Oxide Fuel Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T11%3A28%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20Study%20on%20the%20Catalytic%20Mechanism%20of%20Oxygen%20Reduction%20on%20La%E2%82%80.%E2%82%85Sr%E2%82%80.%E2%82%85MnO%E2%82%83%20in%20Solid%20Oxide%20Fuel%20Cells&rft.jtitle=Angewandte%20Chemie%20(International%20ed.)&rft.au=Choi,%20YongMan&rft.date=2007-01-01&rft.volume=46&rft.issue=38&rft.spage=7214&rft.epage=7219&rft.pages=7214-7219&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.200700411&rft_dat=%3Cistex_wiley%3Eark_67375_WNG_3F8GNRDF_M%3C/istex_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true