MoO2 Nanowire Electrochemically Decorated Graphene Additively Manufactured Supercapacitor Platforms

Additively manufactured (AM) supercapacitor platforms are fabricated from bespoke filaments, which are comprised of electro‐conductive graphene (20 wt%) incorporated polylactic acid (80 wt%), via fused deposition modeling and denoted as G/AMEs. The G/AMEs are shown to be capable of acting as a templ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced energy materials 2021-06, Vol.11 (23), p.n/a, Article 2100433
Hauptverfasser: García‐Miranda Ferrari, Alejandro, Pimlott, Jessica L., Down, Michael P., Rowley‐Neale, Samuel J., Banks, Craig E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 23
container_start_page
container_title Advanced energy materials
container_volume 11
creator García‐Miranda Ferrari, Alejandro
Pimlott, Jessica L.
Down, Michael P.
Rowley‐Neale, Samuel J.
Banks, Craig E.
description Additively manufactured (AM) supercapacitor platforms are fabricated from bespoke filaments, which are comprised of electro‐conductive graphene (20 wt%) incorporated polylactic acid (80 wt%), via fused deposition modeling and denoted as G/AMEs. The G/AMEs are shown to be capable of acting as a template for the electrodeposition of metals/metal oxides, in particular MoO2 nanowires (MoO2‐G/AMEs), which are subsequently explored as a capacitor within 1 m H2SO4, 1‐butyl‐3‐methylimidazolium hexafluorophosphate, and 1‐butyl‐3‐methylimidazolium tetrafluoroborate. Optimization of the MoO2‐G/AMEs demonstrates capacitance up to 1212 F g–1 when used in a symmetric arrangement. The material science described herein represents a significant enhancement in unlocking AMs potential as a valid manufacturing route for device level capacitance architectures. Additively manufactured supercapacitor platforms are fabricated from bespoke filaments, which are comprised of electro‐conductive graphene (20 wt%) incorporated polylactic acid (80 wt%), via fused deposition modeling. These platforms are shown to act as an electrodeposition template where MoO2 nanowires are fabricated and give rise to outstanding supercapacitance performance within ionic liquids.
doi_str_mv 10.1002/aenm.202100433
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_wiley_primary_10_1002_aenm_202100433_AENM202100433</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2541638111</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2733-4f50bfb5d8ec252d9d4ee0428d013c09d269aaab742c1a6841ff51fe8fa497563</originalsourceid><addsrcrecordid>eNqNkc1Lw0AQxYMoWLRXzwGP0rpfSZNjqbUK_RDUc5hsZumWdDduNpb-925o6dm9zD7m92bZeVH0QMmYEsKeAc1-zAgLQnB-FQ1oSsUozQS5vtw5u42Gbbsj4YicEs4HkVzZDYvXYOxBO4znNUrvrNziXkuo62P8gtI68FjFCwfNFg3G06rSXv9i6K7AdAqk71wAPrsGnYQGpPbWxR81eGXdvr2PbhTULQ7P9S76fp1_zd5Gy83ifTZdjho24XwkVEJKVSZVhpIlrMorgUgEyypCuSR5xdIcAMqJYJJC-BpVKqEKMwUinyQpv4seT3MbZ386bH2xs50z4cmCJYKmPKOUBurpRB2wtKqVGo3EonF6D-5YhNWkIuWUJv2Wejr7Pz3THry2ZmY744M1P1t1jceLh5KiT6zoEysuiRXT-Xp1UfwPXcWLBg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2541638111</pqid></control><display><type>article</type><title>MoO2 Nanowire Electrochemically Decorated Graphene Additively Manufactured Supercapacitor Platforms</title><source>Access via Wiley Online Library</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>García‐Miranda Ferrari, Alejandro ; Pimlott, Jessica L. ; Down, Michael P. ; Rowley‐Neale, Samuel J. ; Banks, Craig E.</creator><creatorcontrib>García‐Miranda Ferrari, Alejandro ; Pimlott, Jessica L. ; Down, Michael P. ; Rowley‐Neale, Samuel J. ; Banks, Craig E.</creatorcontrib><description>Additively manufactured (AM) supercapacitor platforms are fabricated from bespoke filaments, which are comprised of electro‐conductive graphene (20 wt%) incorporated polylactic acid (80 wt%), via fused deposition modeling and denoted as G/AMEs. The G/AMEs are shown to be capable of acting as a template for the electrodeposition of metals/metal oxides, in particular MoO2 nanowires (MoO2‐G/AMEs), which are subsequently explored as a capacitor within 1 m H2SO4, 1‐butyl‐3‐methylimidazolium hexafluorophosphate, and 1‐butyl‐3‐methylimidazolium tetrafluoroborate. Optimization of the MoO2‐G/AMEs demonstrates capacitance up to 1212 F g–1 when used in a symmetric arrangement. The material science described herein represents a significant enhancement in unlocking AMs potential as a valid manufacturing route for device level capacitance architectures. Additively manufactured supercapacitor platforms are fabricated from bespoke filaments, which are comprised of electro‐conductive graphene (20 wt%) incorporated polylactic acid (80 wt%), via fused deposition modeling. These platforms are shown to act as an electrodeposition template where MoO2 nanowires are fabricated and give rise to outstanding supercapacitance performance within ionic liquids.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.202100433</identifier><language>eng</language><publisher>WEINHEIM: Wiley</publisher><subject>Additive manufacturing ; Capacitance ; Chemistry ; Chemistry, Physical ; Energy &amp; Fuels ; Filaments ; Fused deposition modeling ; Graphene ; graphene additive manufacturing ; ionic liquids ; Materials Science ; Materials Science, Multidisciplinary ; Metal oxides ; Molybdenum oxides ; MoO2 ; Nanowires ; Optimization ; Physical Sciences ; Physics ; Physics, Applied ; Physics, Condensed Matter ; Platforms ; Polylactic acid ; Science &amp; Technology ; Sulfuric acid ; Supercapacitors ; Technology</subject><ispartof>Advanced energy materials, 2021-06, Vol.11 (23), p.n/a, Article 2100433</ispartof><rights>2021 The Authors. Advanced Energy Materials published by Wiley‐VCH GmbH</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>32</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000646311500001</woscitedreferencesoriginalsourcerecordid><cites>FETCH-LOGICAL-p2733-4f50bfb5d8ec252d9d4ee0428d013c09d269aaab742c1a6841ff51fe8fa497563</cites><orcidid>0000-0002-0756-9764 ; 0000-0003-3307-8800 ; 0000-0003-1797-1519</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.202100433$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.202100433$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,39263,45579,45580</link.rule.ids></links><search><creatorcontrib>García‐Miranda Ferrari, Alejandro</creatorcontrib><creatorcontrib>Pimlott, Jessica L.</creatorcontrib><creatorcontrib>Down, Michael P.</creatorcontrib><creatorcontrib>Rowley‐Neale, Samuel J.</creatorcontrib><creatorcontrib>Banks, Craig E.</creatorcontrib><title>MoO2 Nanowire Electrochemically Decorated Graphene Additively Manufactured Supercapacitor Platforms</title><title>Advanced energy materials</title><addtitle>ADV ENERGY MATER</addtitle><description>Additively manufactured (AM) supercapacitor platforms are fabricated from bespoke filaments, which are comprised of electro‐conductive graphene (20 wt%) incorporated polylactic acid (80 wt%), via fused deposition modeling and denoted as G/AMEs. The G/AMEs are shown to be capable of acting as a template for the electrodeposition of metals/metal oxides, in particular MoO2 nanowires (MoO2‐G/AMEs), which are subsequently explored as a capacitor within 1 m H2SO4, 1‐butyl‐3‐methylimidazolium hexafluorophosphate, and 1‐butyl‐3‐methylimidazolium tetrafluoroborate. Optimization of the MoO2‐G/AMEs demonstrates capacitance up to 1212 F g–1 when used in a symmetric arrangement. The material science described herein represents a significant enhancement in unlocking AMs potential as a valid manufacturing route for device level capacitance architectures. Additively manufactured supercapacitor platforms are fabricated from bespoke filaments, which are comprised of electro‐conductive graphene (20 wt%) incorporated polylactic acid (80 wt%), via fused deposition modeling. These platforms are shown to act as an electrodeposition template where MoO2 nanowires are fabricated and give rise to outstanding supercapacitance performance within ionic liquids.</description><subject>Additive manufacturing</subject><subject>Capacitance</subject><subject>Chemistry</subject><subject>Chemistry, Physical</subject><subject>Energy &amp; Fuels</subject><subject>Filaments</subject><subject>Fused deposition modeling</subject><subject>Graphene</subject><subject>graphene additive manufacturing</subject><subject>ionic liquids</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>Metal oxides</subject><subject>Molybdenum oxides</subject><subject>MoO2</subject><subject>Nanowires</subject><subject>Optimization</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Applied</subject><subject>Physics, Condensed Matter</subject><subject>Platforms</subject><subject>Polylactic acid</subject><subject>Science &amp; Technology</subject><subject>Sulfuric acid</subject><subject>Supercapacitors</subject><subject>Technology</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>HGBXW</sourceid><recordid>eNqNkc1Lw0AQxYMoWLRXzwGP0rpfSZNjqbUK_RDUc5hsZumWdDduNpb-925o6dm9zD7m92bZeVH0QMmYEsKeAc1-zAgLQnB-FQ1oSsUozQS5vtw5u42Gbbsj4YicEs4HkVzZDYvXYOxBO4znNUrvrNziXkuo62P8gtI68FjFCwfNFg3G06rSXv9i6K7AdAqk71wAPrsGnYQGpPbWxR81eGXdvr2PbhTULQ7P9S76fp1_zd5Gy83ifTZdjho24XwkVEJKVSZVhpIlrMorgUgEyypCuSR5xdIcAMqJYJJC-BpVKqEKMwUinyQpv4seT3MbZ386bH2xs50z4cmCJYKmPKOUBurpRB2wtKqVGo3EonF6D-5YhNWkIuWUJv2Wejr7Pz3THry2ZmY744M1P1t1jceLh5KiT6zoEysuiRXT-Xp1UfwPXcWLBg</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>García‐Miranda Ferrari, Alejandro</creator><creator>Pimlott, Jessica L.</creator><creator>Down, Michael P.</creator><creator>Rowley‐Neale, Samuel J.</creator><creator>Banks, Craig E.</creator><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0756-9764</orcidid><orcidid>https://orcid.org/0000-0003-3307-8800</orcidid><orcidid>https://orcid.org/0000-0003-1797-1519</orcidid></search><sort><creationdate>20210601</creationdate><title>MoO2 Nanowire Electrochemically Decorated Graphene Additively Manufactured Supercapacitor Platforms</title><author>García‐Miranda Ferrari, Alejandro ; Pimlott, Jessica L. ; Down, Michael P. ; Rowley‐Neale, Samuel J. ; Banks, Craig E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2733-4f50bfb5d8ec252d9d4ee0428d013c09d269aaab742c1a6841ff51fe8fa497563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Additive manufacturing</topic><topic>Capacitance</topic><topic>Chemistry</topic><topic>Chemistry, Physical</topic><topic>Energy &amp; Fuels</topic><topic>Filaments</topic><topic>Fused deposition modeling</topic><topic>Graphene</topic><topic>graphene additive manufacturing</topic><topic>ionic liquids</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>Metal oxides</topic><topic>Molybdenum oxides</topic><topic>MoO2</topic><topic>Nanowires</topic><topic>Optimization</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Applied</topic><topic>Physics, Condensed Matter</topic><topic>Platforms</topic><topic>Polylactic acid</topic><topic>Science &amp; Technology</topic><topic>Sulfuric acid</topic><topic>Supercapacitors</topic><topic>Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>García‐Miranda Ferrari, Alejandro</creatorcontrib><creatorcontrib>Pimlott, Jessica L.</creatorcontrib><creatorcontrib>Down, Michael P.</creatorcontrib><creatorcontrib>Rowley‐Neale, Samuel J.</creatorcontrib><creatorcontrib>Banks, Craig E.</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>García‐Miranda Ferrari, Alejandro</au><au>Pimlott, Jessica L.</au><au>Down, Michael P.</au><au>Rowley‐Neale, Samuel J.</au><au>Banks, Craig E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MoO2 Nanowire Electrochemically Decorated Graphene Additively Manufactured Supercapacitor Platforms</atitle><jtitle>Advanced energy materials</jtitle><stitle>ADV ENERGY MATER</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>11</volume><issue>23</issue><epage>n/a</epage><artnum>2100433</artnum><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Additively manufactured (AM) supercapacitor platforms are fabricated from bespoke filaments, which are comprised of electro‐conductive graphene (20 wt%) incorporated polylactic acid (80 wt%), via fused deposition modeling and denoted as G/AMEs. The G/AMEs are shown to be capable of acting as a template for the electrodeposition of metals/metal oxides, in particular MoO2 nanowires (MoO2‐G/AMEs), which are subsequently explored as a capacitor within 1 m H2SO4, 1‐butyl‐3‐methylimidazolium hexafluorophosphate, and 1‐butyl‐3‐methylimidazolium tetrafluoroborate. Optimization of the MoO2‐G/AMEs demonstrates capacitance up to 1212 F g–1 when used in a symmetric arrangement. The material science described herein represents a significant enhancement in unlocking AMs potential as a valid manufacturing route for device level capacitance architectures. Additively manufactured supercapacitor platforms are fabricated from bespoke filaments, which are comprised of electro‐conductive graphene (20 wt%) incorporated polylactic acid (80 wt%), via fused deposition modeling. These platforms are shown to act as an electrodeposition template where MoO2 nanowires are fabricated and give rise to outstanding supercapacitance performance within ionic liquids.</abstract><cop>WEINHEIM</cop><pub>Wiley</pub><doi>10.1002/aenm.202100433</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-0756-9764</orcidid><orcidid>https://orcid.org/0000-0003-3307-8800</orcidid><orcidid>https://orcid.org/0000-0003-1797-1519</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1614-6832
ispartof Advanced energy materials, 2021-06, Vol.11 (23), p.n/a, Article 2100433
issn 1614-6832
1614-6840
language eng
recordid cdi_wiley_primary_10_1002_aenm_202100433_AENM202100433
source Access via Wiley Online Library; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Additive manufacturing
Capacitance
Chemistry
Chemistry, Physical
Energy & Fuels
Filaments
Fused deposition modeling
Graphene
graphene additive manufacturing
ionic liquids
Materials Science
Materials Science, Multidisciplinary
Metal oxides
Molybdenum oxides
MoO2
Nanowires
Optimization
Physical Sciences
Physics
Physics, Applied
Physics, Condensed Matter
Platforms
Polylactic acid
Science & Technology
Sulfuric acid
Supercapacitors
Technology
title MoO2 Nanowire Electrochemically Decorated Graphene Additively Manufactured Supercapacitor Platforms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T04%3A36%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MoO2%20Nanowire%20Electrochemically%20Decorated%20Graphene%20Additively%20Manufactured%20Supercapacitor%20Platforms&rft.jtitle=Advanced%20energy%20materials&rft.au=Garc%C3%ADa%E2%80%90Miranda%20Ferrari,%20Alejandro&rft.date=2021-06-01&rft.volume=11&rft.issue=23&rft.epage=n/a&rft.artnum=2100433&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.202100433&rft_dat=%3Cproquest_wiley%3E2541638111%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2541638111&rft_id=info:pmid/&rfr_iscdi=true