MoO2 Nanowire Electrochemically Decorated Graphene Additively Manufactured Supercapacitor Platforms
Additively manufactured (AM) supercapacitor platforms are fabricated from bespoke filaments, which are comprised of electro‐conductive graphene (20 wt%) incorporated polylactic acid (80 wt%), via fused deposition modeling and denoted as G/AMEs. The G/AMEs are shown to be capable of acting as a templ...
Gespeichert in:
Veröffentlicht in: | Advanced energy materials 2021-06, Vol.11 (23), p.n/a, Article 2100433 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 23 |
container_start_page | |
container_title | Advanced energy materials |
container_volume | 11 |
creator | García‐Miranda Ferrari, Alejandro Pimlott, Jessica L. Down, Michael P. Rowley‐Neale, Samuel J. Banks, Craig E. |
description | Additively manufactured (AM) supercapacitor platforms are fabricated from bespoke filaments, which are comprised of electro‐conductive graphene (20 wt%) incorporated polylactic acid (80 wt%), via fused deposition modeling and denoted as G/AMEs. The G/AMEs are shown to be capable of acting as a template for the electrodeposition of metals/metal oxides, in particular MoO2 nanowires (MoO2‐G/AMEs), which are subsequently explored as a capacitor within 1 m H2SO4, 1‐butyl‐3‐methylimidazolium hexafluorophosphate, and 1‐butyl‐3‐methylimidazolium tetrafluoroborate. Optimization of the MoO2‐G/AMEs demonstrates capacitance up to 1212 F g–1 when used in a symmetric arrangement. The material science described herein represents a significant enhancement in unlocking AMs potential as a valid manufacturing route for device level capacitance architectures.
Additively manufactured supercapacitor platforms are fabricated from bespoke filaments, which are comprised of electro‐conductive graphene (20 wt%) incorporated polylactic acid (80 wt%), via fused deposition modeling. These platforms are shown to act as an electrodeposition template where MoO2 nanowires are fabricated and give rise to outstanding supercapacitance performance within ionic liquids. |
doi_str_mv | 10.1002/aenm.202100433 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_wiley_primary_10_1002_aenm_202100433_AENM202100433</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2541638111</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2733-4f50bfb5d8ec252d9d4ee0428d013c09d269aaab742c1a6841ff51fe8fa497563</originalsourceid><addsrcrecordid>eNqNkc1Lw0AQxYMoWLRXzwGP0rpfSZNjqbUK_RDUc5hsZumWdDduNpb-925o6dm9zD7m92bZeVH0QMmYEsKeAc1-zAgLQnB-FQ1oSsUozQS5vtw5u42Gbbsj4YicEs4HkVzZDYvXYOxBO4znNUrvrNziXkuo62P8gtI68FjFCwfNFg3G06rSXv9i6K7AdAqk71wAPrsGnYQGpPbWxR81eGXdvr2PbhTULQ7P9S76fp1_zd5Gy83ifTZdjho24XwkVEJKVSZVhpIlrMorgUgEyypCuSR5xdIcAMqJYJJC-BpVKqEKMwUinyQpv4seT3MbZ386bH2xs50z4cmCJYKmPKOUBurpRB2wtKqVGo3EonF6D-5YhNWkIuWUJv2Wejr7Pz3THry2ZmY744M1P1t1jceLh5KiT6zoEysuiRXT-Xp1UfwPXcWLBg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2541638111</pqid></control><display><type>article</type><title>MoO2 Nanowire Electrochemically Decorated Graphene Additively Manufactured Supercapacitor Platforms</title><source>Access via Wiley Online Library</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><creator>García‐Miranda Ferrari, Alejandro ; Pimlott, Jessica L. ; Down, Michael P. ; Rowley‐Neale, Samuel J. ; Banks, Craig E.</creator><creatorcontrib>García‐Miranda Ferrari, Alejandro ; Pimlott, Jessica L. ; Down, Michael P. ; Rowley‐Neale, Samuel J. ; Banks, Craig E.</creatorcontrib><description>Additively manufactured (AM) supercapacitor platforms are fabricated from bespoke filaments, which are comprised of electro‐conductive graphene (20 wt%) incorporated polylactic acid (80 wt%), via fused deposition modeling and denoted as G/AMEs. The G/AMEs are shown to be capable of acting as a template for the electrodeposition of metals/metal oxides, in particular MoO2 nanowires (MoO2‐G/AMEs), which are subsequently explored as a capacitor within 1 m H2SO4, 1‐butyl‐3‐methylimidazolium hexafluorophosphate, and 1‐butyl‐3‐methylimidazolium tetrafluoroborate. Optimization of the MoO2‐G/AMEs demonstrates capacitance up to 1212 F g–1 when used in a symmetric arrangement. The material science described herein represents a significant enhancement in unlocking AMs potential as a valid manufacturing route for device level capacitance architectures.
Additively manufactured supercapacitor platforms are fabricated from bespoke filaments, which are comprised of electro‐conductive graphene (20 wt%) incorporated polylactic acid (80 wt%), via fused deposition modeling. These platforms are shown to act as an electrodeposition template where MoO2 nanowires are fabricated and give rise to outstanding supercapacitance performance within ionic liquids.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.202100433</identifier><language>eng</language><publisher>WEINHEIM: Wiley</publisher><subject>Additive manufacturing ; Capacitance ; Chemistry ; Chemistry, Physical ; Energy & Fuels ; Filaments ; Fused deposition modeling ; Graphene ; graphene additive manufacturing ; ionic liquids ; Materials Science ; Materials Science, Multidisciplinary ; Metal oxides ; Molybdenum oxides ; MoO2 ; Nanowires ; Optimization ; Physical Sciences ; Physics ; Physics, Applied ; Physics, Condensed Matter ; Platforms ; Polylactic acid ; Science & Technology ; Sulfuric acid ; Supercapacitors ; Technology</subject><ispartof>Advanced energy materials, 2021-06, Vol.11 (23), p.n/a, Article 2100433</ispartof><rights>2021 The Authors. Advanced Energy Materials published by Wiley‐VCH GmbH</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>32</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000646311500001</woscitedreferencesoriginalsourcerecordid><cites>FETCH-LOGICAL-p2733-4f50bfb5d8ec252d9d4ee0428d013c09d269aaab742c1a6841ff51fe8fa497563</cites><orcidid>0000-0002-0756-9764 ; 0000-0003-3307-8800 ; 0000-0003-1797-1519</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.202100433$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.202100433$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,39263,45579,45580</link.rule.ids></links><search><creatorcontrib>García‐Miranda Ferrari, Alejandro</creatorcontrib><creatorcontrib>Pimlott, Jessica L.</creatorcontrib><creatorcontrib>Down, Michael P.</creatorcontrib><creatorcontrib>Rowley‐Neale, Samuel J.</creatorcontrib><creatorcontrib>Banks, Craig E.</creatorcontrib><title>MoO2 Nanowire Electrochemically Decorated Graphene Additively Manufactured Supercapacitor Platforms</title><title>Advanced energy materials</title><addtitle>ADV ENERGY MATER</addtitle><description>Additively manufactured (AM) supercapacitor platforms are fabricated from bespoke filaments, which are comprised of electro‐conductive graphene (20 wt%) incorporated polylactic acid (80 wt%), via fused deposition modeling and denoted as G/AMEs. The G/AMEs are shown to be capable of acting as a template for the electrodeposition of metals/metal oxides, in particular MoO2 nanowires (MoO2‐G/AMEs), which are subsequently explored as a capacitor within 1 m H2SO4, 1‐butyl‐3‐methylimidazolium hexafluorophosphate, and 1‐butyl‐3‐methylimidazolium tetrafluoroborate. Optimization of the MoO2‐G/AMEs demonstrates capacitance up to 1212 F g–1 when used in a symmetric arrangement. The material science described herein represents a significant enhancement in unlocking AMs potential as a valid manufacturing route for device level capacitance architectures.
Additively manufactured supercapacitor platforms are fabricated from bespoke filaments, which are comprised of electro‐conductive graphene (20 wt%) incorporated polylactic acid (80 wt%), via fused deposition modeling. These platforms are shown to act as an electrodeposition template where MoO2 nanowires are fabricated and give rise to outstanding supercapacitance performance within ionic liquids.</description><subject>Additive manufacturing</subject><subject>Capacitance</subject><subject>Chemistry</subject><subject>Chemistry, Physical</subject><subject>Energy & Fuels</subject><subject>Filaments</subject><subject>Fused deposition modeling</subject><subject>Graphene</subject><subject>graphene additive manufacturing</subject><subject>ionic liquids</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>Metal oxides</subject><subject>Molybdenum oxides</subject><subject>MoO2</subject><subject>Nanowires</subject><subject>Optimization</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Applied</subject><subject>Physics, Condensed Matter</subject><subject>Platforms</subject><subject>Polylactic acid</subject><subject>Science & Technology</subject><subject>Sulfuric acid</subject><subject>Supercapacitors</subject><subject>Technology</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>HGBXW</sourceid><recordid>eNqNkc1Lw0AQxYMoWLRXzwGP0rpfSZNjqbUK_RDUc5hsZumWdDduNpb-925o6dm9zD7m92bZeVH0QMmYEsKeAc1-zAgLQnB-FQ1oSsUozQS5vtw5u42Gbbsj4YicEs4HkVzZDYvXYOxBO4znNUrvrNziXkuo62P8gtI68FjFCwfNFg3G06rSXv9i6K7AdAqk71wAPrsGnYQGpPbWxR81eGXdvr2PbhTULQ7P9S76fp1_zd5Gy83ifTZdjho24XwkVEJKVSZVhpIlrMorgUgEyypCuSR5xdIcAMqJYJJC-BpVKqEKMwUinyQpv4seT3MbZ386bH2xs50z4cmCJYKmPKOUBurpRB2wtKqVGo3EonF6D-5YhNWkIuWUJv2Wejr7Pz3THry2ZmY744M1P1t1jceLh5KiT6zoEysuiRXT-Xp1UfwPXcWLBg</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>García‐Miranda Ferrari, Alejandro</creator><creator>Pimlott, Jessica L.</creator><creator>Down, Michael P.</creator><creator>Rowley‐Neale, Samuel J.</creator><creator>Banks, Craig E.</creator><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0756-9764</orcidid><orcidid>https://orcid.org/0000-0003-3307-8800</orcidid><orcidid>https://orcid.org/0000-0003-1797-1519</orcidid></search><sort><creationdate>20210601</creationdate><title>MoO2 Nanowire Electrochemically Decorated Graphene Additively Manufactured Supercapacitor Platforms</title><author>García‐Miranda Ferrari, Alejandro ; Pimlott, Jessica L. ; Down, Michael P. ; Rowley‐Neale, Samuel J. ; Banks, Craig E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2733-4f50bfb5d8ec252d9d4ee0428d013c09d269aaab742c1a6841ff51fe8fa497563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Additive manufacturing</topic><topic>Capacitance</topic><topic>Chemistry</topic><topic>Chemistry, Physical</topic><topic>Energy & Fuels</topic><topic>Filaments</topic><topic>Fused deposition modeling</topic><topic>Graphene</topic><topic>graphene additive manufacturing</topic><topic>ionic liquids</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>Metal oxides</topic><topic>Molybdenum oxides</topic><topic>MoO2</topic><topic>Nanowires</topic><topic>Optimization</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Applied</topic><topic>Physics, Condensed Matter</topic><topic>Platforms</topic><topic>Polylactic acid</topic><topic>Science & Technology</topic><topic>Sulfuric acid</topic><topic>Supercapacitors</topic><topic>Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>García‐Miranda Ferrari, Alejandro</creatorcontrib><creatorcontrib>Pimlott, Jessica L.</creatorcontrib><creatorcontrib>Down, Michael P.</creatorcontrib><creatorcontrib>Rowley‐Neale, Samuel J.</creatorcontrib><creatorcontrib>Banks, Craig E.</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>García‐Miranda Ferrari, Alejandro</au><au>Pimlott, Jessica L.</au><au>Down, Michael P.</au><au>Rowley‐Neale, Samuel J.</au><au>Banks, Craig E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MoO2 Nanowire Electrochemically Decorated Graphene Additively Manufactured Supercapacitor Platforms</atitle><jtitle>Advanced energy materials</jtitle><stitle>ADV ENERGY MATER</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>11</volume><issue>23</issue><epage>n/a</epage><artnum>2100433</artnum><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Additively manufactured (AM) supercapacitor platforms are fabricated from bespoke filaments, which are comprised of electro‐conductive graphene (20 wt%) incorporated polylactic acid (80 wt%), via fused deposition modeling and denoted as G/AMEs. The G/AMEs are shown to be capable of acting as a template for the electrodeposition of metals/metal oxides, in particular MoO2 nanowires (MoO2‐G/AMEs), which are subsequently explored as a capacitor within 1 m H2SO4, 1‐butyl‐3‐methylimidazolium hexafluorophosphate, and 1‐butyl‐3‐methylimidazolium tetrafluoroborate. Optimization of the MoO2‐G/AMEs demonstrates capacitance up to 1212 F g–1 when used in a symmetric arrangement. The material science described herein represents a significant enhancement in unlocking AMs potential as a valid manufacturing route for device level capacitance architectures.
Additively manufactured supercapacitor platforms are fabricated from bespoke filaments, which are comprised of electro‐conductive graphene (20 wt%) incorporated polylactic acid (80 wt%), via fused deposition modeling. These platforms are shown to act as an electrodeposition template where MoO2 nanowires are fabricated and give rise to outstanding supercapacitance performance within ionic liquids.</abstract><cop>WEINHEIM</cop><pub>Wiley</pub><doi>10.1002/aenm.202100433</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-0756-9764</orcidid><orcidid>https://orcid.org/0000-0003-3307-8800</orcidid><orcidid>https://orcid.org/0000-0003-1797-1519</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1614-6832 |
ispartof | Advanced energy materials, 2021-06, Vol.11 (23), p.n/a, Article 2100433 |
issn | 1614-6832 1614-6840 |
language | eng |
recordid | cdi_wiley_primary_10_1002_aenm_202100433_AENM202100433 |
source | Access via Wiley Online Library; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /> |
subjects | Additive manufacturing Capacitance Chemistry Chemistry, Physical Energy & Fuels Filaments Fused deposition modeling Graphene graphene additive manufacturing ionic liquids Materials Science Materials Science, Multidisciplinary Metal oxides Molybdenum oxides MoO2 Nanowires Optimization Physical Sciences Physics Physics, Applied Physics, Condensed Matter Platforms Polylactic acid Science & Technology Sulfuric acid Supercapacitors Technology |
title | MoO2 Nanowire Electrochemically Decorated Graphene Additively Manufactured Supercapacitor Platforms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T04%3A36%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MoO2%20Nanowire%20Electrochemically%20Decorated%20Graphene%20Additively%20Manufactured%20Supercapacitor%20Platforms&rft.jtitle=Advanced%20energy%20materials&rft.au=Garc%C3%ADa%E2%80%90Miranda%20Ferrari,%20Alejandro&rft.date=2021-06-01&rft.volume=11&rft.issue=23&rft.epage=n/a&rft.artnum=2100433&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.202100433&rft_dat=%3Cproquest_wiley%3E2541638111%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2541638111&rft_id=info:pmid/&rfr_iscdi=true |