Tuning Sodium Occupancy Sites in P2‐Layered Cathode Material for Enhancing Electrochemical Performance
Different sodium occupancy sites in P2‐layered cathode materials can reorganize Na‐ion distribution and modify the Na+/vacancy superstructure, which have a vital impact on the Na‐ion transport and Na storage behavior during charge and discharge processes, but have not been investigated specifically...
Gespeichert in:
Veröffentlicht in: | Advanced energy materials 2021-04, Vol.11 (13), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 13 |
container_start_page | |
container_title | Advanced energy materials |
container_volume | 11 |
creator | Wang, Qin‐Chao Shadike, Zulipiya Li, Xun‐Lu Bao, Jian Qiu, Qi‐Qi Hu, Enyuan Bak, Seong‐Min Xiao, Xianghui Ma, Lu Wu, Xiao‐Jing Yang, Xiao‐Qing Zhou, Yong‐Ning |
description | Different sodium occupancy sites in P2‐layered cathode materials can reorganize Na‐ion distribution and modify the Na+/vacancy superstructure, which have a vital impact on the Na‐ion transport and Na storage behavior during charge and discharge processes, but have not been investigated specifically and are not yet well understood. Herein, the occupancy ratio of two different Na sites (sites below transition metal ions and sites below oxygen ions along the c direction) in P2‐Na0.67[Mn0.66Ni0.33]O2 cathode is tuned successfully by inducing Sb5+ ions with strong repulsion toward Na sites right below transition metals. It is found that the decrease of Na occupancy right below transition metal ions is beneficial to the electrochemical performance of P2‐layered cathode materials, regarding cycle stability and rate capability. In situ X‐ray absorption spectroscopy reveals that the reversible Mn3.3+/Mn4+ and Ni2+/Ni3+ redox couples provide charge compensation in different voltage regions of 1.8–2.3 and 2.3–4.2 V, respectively. The transmission X‐ray microscopy confirms the uniform redox reaction over the whole electrode particle. In addition, Sb substitution can suppress the “P2‐O2” phase transition in high voltage region by preventing oxygen gliding in a–b planes, thus ensuring robust structure stability during cycling.
The ratio of two different sodium occupancy sites (Nae and Naf) in P2‐Na0.67[Mn0.66Ni0.33]O2 cathode is tuned successfully by Sb5+ substitution. The decrease of Naf occupation breaks the Na+/vacancy ordering, makes the redox reaction over the whole electrode particles uniform, and suppresses the “P2‐O2” phase transition in the high‐voltage region, thus improving the overall electrochemical performance effectively. |
doi_str_mv | 10.1002/aenm.202003455 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_wiley_primary_10_1002_aenm_202003455_AENM202003455</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2509482984</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3835-2f061902e577a1968d06fa6acbcc7bad160d0540bda8dea8a4b226844ce8f66c3</originalsourceid><addsrcrecordid>eNqFkM9KAzEQxhdRsFSvnoOeWyfZbHb3KKX-gaqF1nNIs7NupJvUZBfpzUfwGX0SUyr16FxmYH7f8M2XJBcUxhSAXSu07ZgBA0h5lh0lAyooH4mCw_FhTtlpch7CG8TiJYU0HSTNsrfGvpKFq0zfkmet-42yeksWpsNAjCVz9v35NVNb9FiRieoaVyF5VB16o9akdp5MbRMluyvTNerOO91ga3TcztFHoI1bPEtOarUOeP7bh8nL7XQ5uR_Nnu8eJjezkU6LNBuxGgQtgWGW54qWoqhA1EoovdI6X6mKCqgg47CqVFGhKhRfMRbf5BqLWgidDpPL_V0XOiODjm_oRjtrozNJ85xSTiN0tYc23r33GDr55npvoy_JMih5wcqCR2q8p7R3IXis5cabVvmtpCB3qctd6vKQehSUe8GHWeP2H1reTJ8e_7Q_VWGG5w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2509482984</pqid></control><display><type>article</type><title>Tuning Sodium Occupancy Sites in P2‐Layered Cathode Material for Enhancing Electrochemical Performance</title><source>Wiley Online Library All Journals</source><creator>Wang, Qin‐Chao ; Shadike, Zulipiya ; Li, Xun‐Lu ; Bao, Jian ; Qiu, Qi‐Qi ; Hu, Enyuan ; Bak, Seong‐Min ; Xiao, Xianghui ; Ma, Lu ; Wu, Xiao‐Jing ; Yang, Xiao‐Qing ; Zhou, Yong‐Ning</creator><creatorcontrib>Wang, Qin‐Chao ; Shadike, Zulipiya ; Li, Xun‐Lu ; Bao, Jian ; Qiu, Qi‐Qi ; Hu, Enyuan ; Bak, Seong‐Min ; Xiao, Xianghui ; Ma, Lu ; Wu, Xiao‐Jing ; Yang, Xiao‐Qing ; Zhou, Yong‐Ning ; Brookhaven National Lab. (BNL), Upton, NY (United States)</creatorcontrib><description>Different sodium occupancy sites in P2‐layered cathode materials can reorganize Na‐ion distribution and modify the Na+/vacancy superstructure, which have a vital impact on the Na‐ion transport and Na storage behavior during charge and discharge processes, but have not been investigated specifically and are not yet well understood. Herein, the occupancy ratio of two different Na sites (sites below transition metal ions and sites below oxygen ions along the c direction) in P2‐Na0.67[Mn0.66Ni0.33]O2 cathode is tuned successfully by inducing Sb5+ ions with strong repulsion toward Na sites right below transition metals. It is found that the decrease of Na occupancy right below transition metal ions is beneficial to the electrochemical performance of P2‐layered cathode materials, regarding cycle stability and rate capability. In situ X‐ray absorption spectroscopy reveals that the reversible Mn3.3+/Mn4+ and Ni2+/Ni3+ redox couples provide charge compensation in different voltage regions of 1.8–2.3 and 2.3–4.2 V, respectively. The transmission X‐ray microscopy confirms the uniform redox reaction over the whole electrode particle. In addition, Sb substitution can suppress the “P2‐O2” phase transition in high voltage region by preventing oxygen gliding in a–b planes, thus ensuring robust structure stability during cycling.
The ratio of two different sodium occupancy sites (Nae and Naf) in P2‐Na0.67[Mn0.66Ni0.33]O2 cathode is tuned successfully by Sb5+ substitution. The decrease of Naf occupation breaks the Na+/vacancy ordering, makes the redox reaction over the whole electrode particles uniform, and suppresses the “P2‐O2” phase transition in the high‐voltage region, thus improving the overall electrochemical performance effectively.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.202003455</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Antimony ; cathode materials ; Cathodes ; Electrochemical analysis ; Electrode materials ; ENERGY STORAGE ; Ion distribution ; Ion transport ; Manganese ; Metal ions ; Na+/vacancy ; Occupancy ; Oxygen ions ; P2-structure ; Phase transitions ; Redox reactions ; Sodium ; sodium-ion batteries ; Structural stability ; Substitution reactions ; Superstructures ; Transition metals ; X‐ray absorption spectroscopy</subject><ispartof>Advanced energy materials, 2021-04, Vol.11 (13), p.n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3835-2f061902e577a1968d06fa6acbcc7bad160d0540bda8dea8a4b226844ce8f66c3</citedby><cites>FETCH-LOGICAL-c3835-2f061902e577a1968d06fa6acbcc7bad160d0540bda8dea8a4b226844ce8f66c3</cites><orcidid>0000-0002-9791-3468 ; 0000000297913468</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.202003455$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.202003455$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1771141$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Qin‐Chao</creatorcontrib><creatorcontrib>Shadike, Zulipiya</creatorcontrib><creatorcontrib>Li, Xun‐Lu</creatorcontrib><creatorcontrib>Bao, Jian</creatorcontrib><creatorcontrib>Qiu, Qi‐Qi</creatorcontrib><creatorcontrib>Hu, Enyuan</creatorcontrib><creatorcontrib>Bak, Seong‐Min</creatorcontrib><creatorcontrib>Xiao, Xianghui</creatorcontrib><creatorcontrib>Ma, Lu</creatorcontrib><creatorcontrib>Wu, Xiao‐Jing</creatorcontrib><creatorcontrib>Yang, Xiao‐Qing</creatorcontrib><creatorcontrib>Zhou, Yong‐Ning</creatorcontrib><creatorcontrib>Brookhaven National Lab. (BNL), Upton, NY (United States)</creatorcontrib><title>Tuning Sodium Occupancy Sites in P2‐Layered Cathode Material for Enhancing Electrochemical Performance</title><title>Advanced energy materials</title><description>Different sodium occupancy sites in P2‐layered cathode materials can reorganize Na‐ion distribution and modify the Na+/vacancy superstructure, which have a vital impact on the Na‐ion transport and Na storage behavior during charge and discharge processes, but have not been investigated specifically and are not yet well understood. Herein, the occupancy ratio of two different Na sites (sites below transition metal ions and sites below oxygen ions along the c direction) in P2‐Na0.67[Mn0.66Ni0.33]O2 cathode is tuned successfully by inducing Sb5+ ions with strong repulsion toward Na sites right below transition metals. It is found that the decrease of Na occupancy right below transition metal ions is beneficial to the electrochemical performance of P2‐layered cathode materials, regarding cycle stability and rate capability. In situ X‐ray absorption spectroscopy reveals that the reversible Mn3.3+/Mn4+ and Ni2+/Ni3+ redox couples provide charge compensation in different voltage regions of 1.8–2.3 and 2.3–4.2 V, respectively. The transmission X‐ray microscopy confirms the uniform redox reaction over the whole electrode particle. In addition, Sb substitution can suppress the “P2‐O2” phase transition in high voltage region by preventing oxygen gliding in a–b planes, thus ensuring robust structure stability during cycling.
The ratio of two different sodium occupancy sites (Nae and Naf) in P2‐Na0.67[Mn0.66Ni0.33]O2 cathode is tuned successfully by Sb5+ substitution. The decrease of Naf occupation breaks the Na+/vacancy ordering, makes the redox reaction over the whole electrode particles uniform, and suppresses the “P2‐O2” phase transition in the high‐voltage region, thus improving the overall electrochemical performance effectively.</description><subject>Antimony</subject><subject>cathode materials</subject><subject>Cathodes</subject><subject>Electrochemical analysis</subject><subject>Electrode materials</subject><subject>ENERGY STORAGE</subject><subject>Ion distribution</subject><subject>Ion transport</subject><subject>Manganese</subject><subject>Metal ions</subject><subject>Na+/vacancy</subject><subject>Occupancy</subject><subject>Oxygen ions</subject><subject>P2-structure</subject><subject>Phase transitions</subject><subject>Redox reactions</subject><subject>Sodium</subject><subject>sodium-ion batteries</subject><subject>Structural stability</subject><subject>Substitution reactions</subject><subject>Superstructures</subject><subject>Transition metals</subject><subject>X‐ray absorption spectroscopy</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkM9KAzEQxhdRsFSvnoOeWyfZbHb3KKX-gaqF1nNIs7NupJvUZBfpzUfwGX0SUyr16FxmYH7f8M2XJBcUxhSAXSu07ZgBA0h5lh0lAyooH4mCw_FhTtlpch7CG8TiJYU0HSTNsrfGvpKFq0zfkmet-42yeksWpsNAjCVz9v35NVNb9FiRieoaVyF5VB16o9akdp5MbRMluyvTNerOO91ga3TcztFHoI1bPEtOarUOeP7bh8nL7XQ5uR_Nnu8eJjezkU6LNBuxGgQtgWGW54qWoqhA1EoovdI6X6mKCqgg47CqVFGhKhRfMRbf5BqLWgidDpPL_V0XOiODjm_oRjtrozNJ85xSTiN0tYc23r33GDr55npvoy_JMih5wcqCR2q8p7R3IXis5cabVvmtpCB3qctd6vKQehSUe8GHWeP2H1reTJ8e_7Q_VWGG5w</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Wang, Qin‐Chao</creator><creator>Shadike, Zulipiya</creator><creator>Li, Xun‐Lu</creator><creator>Bao, Jian</creator><creator>Qiu, Qi‐Qi</creator><creator>Hu, Enyuan</creator><creator>Bak, Seong‐Min</creator><creator>Xiao, Xianghui</creator><creator>Ma, Lu</creator><creator>Wu, Xiao‐Jing</creator><creator>Yang, Xiao‐Qing</creator><creator>Zhou, Yong‐Ning</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-9791-3468</orcidid><orcidid>https://orcid.org/0000000297913468</orcidid></search><sort><creationdate>20210401</creationdate><title>Tuning Sodium Occupancy Sites in P2‐Layered Cathode Material for Enhancing Electrochemical Performance</title><author>Wang, Qin‐Chao ; Shadike, Zulipiya ; Li, Xun‐Lu ; Bao, Jian ; Qiu, Qi‐Qi ; Hu, Enyuan ; Bak, Seong‐Min ; Xiao, Xianghui ; Ma, Lu ; Wu, Xiao‐Jing ; Yang, Xiao‐Qing ; Zhou, Yong‐Ning</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3835-2f061902e577a1968d06fa6acbcc7bad160d0540bda8dea8a4b226844ce8f66c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Antimony</topic><topic>cathode materials</topic><topic>Cathodes</topic><topic>Electrochemical analysis</topic><topic>Electrode materials</topic><topic>ENERGY STORAGE</topic><topic>Ion distribution</topic><topic>Ion transport</topic><topic>Manganese</topic><topic>Metal ions</topic><topic>Na+/vacancy</topic><topic>Occupancy</topic><topic>Oxygen ions</topic><topic>P2-structure</topic><topic>Phase transitions</topic><topic>Redox reactions</topic><topic>Sodium</topic><topic>sodium-ion batteries</topic><topic>Structural stability</topic><topic>Substitution reactions</topic><topic>Superstructures</topic><topic>Transition metals</topic><topic>X‐ray absorption spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Qin‐Chao</creatorcontrib><creatorcontrib>Shadike, Zulipiya</creatorcontrib><creatorcontrib>Li, Xun‐Lu</creatorcontrib><creatorcontrib>Bao, Jian</creatorcontrib><creatorcontrib>Qiu, Qi‐Qi</creatorcontrib><creatorcontrib>Hu, Enyuan</creatorcontrib><creatorcontrib>Bak, Seong‐Min</creatorcontrib><creatorcontrib>Xiao, Xianghui</creatorcontrib><creatorcontrib>Ma, Lu</creatorcontrib><creatorcontrib>Wu, Xiao‐Jing</creatorcontrib><creatorcontrib>Yang, Xiao‐Qing</creatorcontrib><creatorcontrib>Zhou, Yong‐Ning</creatorcontrib><creatorcontrib>Brookhaven National Lab. (BNL), Upton, NY (United States)</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Qin‐Chao</au><au>Shadike, Zulipiya</au><au>Li, Xun‐Lu</au><au>Bao, Jian</au><au>Qiu, Qi‐Qi</au><au>Hu, Enyuan</au><au>Bak, Seong‐Min</au><au>Xiao, Xianghui</au><au>Ma, Lu</au><au>Wu, Xiao‐Jing</au><au>Yang, Xiao‐Qing</au><au>Zhou, Yong‐Ning</au><aucorp>Brookhaven National Lab. (BNL), Upton, NY (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tuning Sodium Occupancy Sites in P2‐Layered Cathode Material for Enhancing Electrochemical Performance</atitle><jtitle>Advanced energy materials</jtitle><date>2021-04-01</date><risdate>2021</risdate><volume>11</volume><issue>13</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Different sodium occupancy sites in P2‐layered cathode materials can reorganize Na‐ion distribution and modify the Na+/vacancy superstructure, which have a vital impact on the Na‐ion transport and Na storage behavior during charge and discharge processes, but have not been investigated specifically and are not yet well understood. Herein, the occupancy ratio of two different Na sites (sites below transition metal ions and sites below oxygen ions along the c direction) in P2‐Na0.67[Mn0.66Ni0.33]O2 cathode is tuned successfully by inducing Sb5+ ions with strong repulsion toward Na sites right below transition metals. It is found that the decrease of Na occupancy right below transition metal ions is beneficial to the electrochemical performance of P2‐layered cathode materials, regarding cycle stability and rate capability. In situ X‐ray absorption spectroscopy reveals that the reversible Mn3.3+/Mn4+ and Ni2+/Ni3+ redox couples provide charge compensation in different voltage regions of 1.8–2.3 and 2.3–4.2 V, respectively. The transmission X‐ray microscopy confirms the uniform redox reaction over the whole electrode particle. In addition, Sb substitution can suppress the “P2‐O2” phase transition in high voltage region by preventing oxygen gliding in a–b planes, thus ensuring robust structure stability during cycling.
The ratio of two different sodium occupancy sites (Nae and Naf) in P2‐Na0.67[Mn0.66Ni0.33]O2 cathode is tuned successfully by Sb5+ substitution. The decrease of Naf occupation breaks the Na+/vacancy ordering, makes the redox reaction over the whole electrode particles uniform, and suppresses the “P2‐O2” phase transition in the high‐voltage region, thus improving the overall electrochemical performance effectively.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.202003455</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-9791-3468</orcidid><orcidid>https://orcid.org/0000000297913468</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1614-6832 |
ispartof | Advanced energy materials, 2021-04, Vol.11 (13), p.n/a |
issn | 1614-6832 1614-6840 |
language | eng |
recordid | cdi_wiley_primary_10_1002_aenm_202003455_AENM202003455 |
source | Wiley Online Library All Journals |
subjects | Antimony cathode materials Cathodes Electrochemical analysis Electrode materials ENERGY STORAGE Ion distribution Ion transport Manganese Metal ions Na+/vacancy Occupancy Oxygen ions P2-structure Phase transitions Redox reactions Sodium sodium-ion batteries Structural stability Substitution reactions Superstructures Transition metals X‐ray absorption spectroscopy |
title | Tuning Sodium Occupancy Sites in P2‐Layered Cathode Material for Enhancing Electrochemical Performance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T07%3A02%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tuning%20Sodium%20Occupancy%20Sites%20in%20P2%E2%80%90Layered%20Cathode%20Material%20for%20Enhancing%20Electrochemical%20Performance&rft.jtitle=Advanced%20energy%20materials&rft.au=Wang,%20Qin%E2%80%90Chao&rft.aucorp=Brookhaven%20National%20Lab.%20(BNL),%20Upton,%20NY%20(United%20States)&rft.date=2021-04-01&rft.volume=11&rft.issue=13&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.202003455&rft_dat=%3Cproquest_osti_%3E2509482984%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2509482984&rft_id=info:pmid/&rfr_iscdi=true |