Tuning Sodium Occupancy Sites in P2‐Layered Cathode Material for Enhancing Electrochemical Performance

Different sodium occupancy sites in P2‐layered cathode materials can reorganize Na‐ion distribution and modify the Na+/vacancy superstructure, which have a vital impact on the Na‐ion transport and Na storage behavior during charge and discharge processes, but have not been investigated specifically...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced energy materials 2021-04, Vol.11 (13), p.n/a
Hauptverfasser: Wang, Qin‐Chao, Shadike, Zulipiya, Li, Xun‐Lu, Bao, Jian, Qiu, Qi‐Qi, Hu, Enyuan, Bak, Seong‐Min, Xiao, Xianghui, Ma, Lu, Wu, Xiao‐Jing, Yang, Xiao‐Qing, Zhou, Yong‐Ning
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 13
container_start_page
container_title Advanced energy materials
container_volume 11
creator Wang, Qin‐Chao
Shadike, Zulipiya
Li, Xun‐Lu
Bao, Jian
Qiu, Qi‐Qi
Hu, Enyuan
Bak, Seong‐Min
Xiao, Xianghui
Ma, Lu
Wu, Xiao‐Jing
Yang, Xiao‐Qing
Zhou, Yong‐Ning
description Different sodium occupancy sites in P2‐layered cathode materials can reorganize Na‐ion distribution and modify the Na+/vacancy superstructure, which have a vital impact on the Na‐ion transport and Na storage behavior during charge and discharge processes, but have not been investigated specifically and are not yet well understood. Herein, the occupancy ratio of two different Na sites (sites below transition metal ions and sites below oxygen ions along the c direction) in P2‐Na0.67[Mn0.66Ni0.33]O2 cathode is tuned successfully by inducing Sb5+ ions with strong repulsion toward Na sites right below transition metals. It is found that the decrease of Na occupancy right below transition metal ions is beneficial to the electrochemical performance of P2‐layered cathode materials, regarding cycle stability and rate capability. In situ X‐ray absorption spectroscopy reveals that the reversible Mn3.3+/Mn4+ and Ni2+/Ni3+ redox couples provide charge compensation in different voltage regions of 1.8–2.3 and 2.3–4.2 V, respectively. The transmission X‐ray microscopy confirms the uniform redox reaction over the whole electrode particle. In addition, Sb substitution can suppress the “P2‐O2” phase transition in high voltage region by preventing oxygen gliding in a–b planes, thus ensuring robust structure stability during cycling. The ratio of two different sodium occupancy sites (Nae and Naf) in P2‐Na0.67[Mn0.66Ni0.33]O2 cathode is tuned successfully by Sb5+ substitution. The decrease of Naf occupation breaks the Na+/vacancy ordering, makes the redox reaction over the whole electrode particles uniform, and suppresses the “P2‐O2” phase transition in the high‐voltage region, thus improving the overall electrochemical performance effectively.
doi_str_mv 10.1002/aenm.202003455
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_wiley_primary_10_1002_aenm_202003455_AENM202003455</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2509482984</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3835-2f061902e577a1968d06fa6acbcc7bad160d0540bda8dea8a4b226844ce8f66c3</originalsourceid><addsrcrecordid>eNqFkM9KAzEQxhdRsFSvnoOeWyfZbHb3KKX-gaqF1nNIs7NupJvUZBfpzUfwGX0SUyr16FxmYH7f8M2XJBcUxhSAXSu07ZgBA0h5lh0lAyooH4mCw_FhTtlpch7CG8TiJYU0HSTNsrfGvpKFq0zfkmet-42yeksWpsNAjCVz9v35NVNb9FiRieoaVyF5VB16o9akdp5MbRMluyvTNerOO91ga3TcztFHoI1bPEtOarUOeP7bh8nL7XQ5uR_Nnu8eJjezkU6LNBuxGgQtgWGW54qWoqhA1EoovdI6X6mKCqgg47CqVFGhKhRfMRbf5BqLWgidDpPL_V0XOiODjm_oRjtrozNJ85xSTiN0tYc23r33GDr55npvoy_JMih5wcqCR2q8p7R3IXis5cabVvmtpCB3qctd6vKQehSUe8GHWeP2H1reTJ8e_7Q_VWGG5w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2509482984</pqid></control><display><type>article</type><title>Tuning Sodium Occupancy Sites in P2‐Layered Cathode Material for Enhancing Electrochemical Performance</title><source>Wiley Online Library All Journals</source><creator>Wang, Qin‐Chao ; Shadike, Zulipiya ; Li, Xun‐Lu ; Bao, Jian ; Qiu, Qi‐Qi ; Hu, Enyuan ; Bak, Seong‐Min ; Xiao, Xianghui ; Ma, Lu ; Wu, Xiao‐Jing ; Yang, Xiao‐Qing ; Zhou, Yong‐Ning</creator><creatorcontrib>Wang, Qin‐Chao ; Shadike, Zulipiya ; Li, Xun‐Lu ; Bao, Jian ; Qiu, Qi‐Qi ; Hu, Enyuan ; Bak, Seong‐Min ; Xiao, Xianghui ; Ma, Lu ; Wu, Xiao‐Jing ; Yang, Xiao‐Qing ; Zhou, Yong‐Ning ; Brookhaven National Lab. (BNL), Upton, NY (United States)</creatorcontrib><description>Different sodium occupancy sites in P2‐layered cathode materials can reorganize Na‐ion distribution and modify the Na+/vacancy superstructure, which have a vital impact on the Na‐ion transport and Na storage behavior during charge and discharge processes, but have not been investigated specifically and are not yet well understood. Herein, the occupancy ratio of two different Na sites (sites below transition metal ions and sites below oxygen ions along the c direction) in P2‐Na0.67[Mn0.66Ni0.33]O2 cathode is tuned successfully by inducing Sb5+ ions with strong repulsion toward Na sites right below transition metals. It is found that the decrease of Na occupancy right below transition metal ions is beneficial to the electrochemical performance of P2‐layered cathode materials, regarding cycle stability and rate capability. In situ X‐ray absorption spectroscopy reveals that the reversible Mn3.3+/Mn4+ and Ni2+/Ni3+ redox couples provide charge compensation in different voltage regions of 1.8–2.3 and 2.3–4.2 V, respectively. The transmission X‐ray microscopy confirms the uniform redox reaction over the whole electrode particle. In addition, Sb substitution can suppress the “P2‐O2” phase transition in high voltage region by preventing oxygen gliding in a–b planes, thus ensuring robust structure stability during cycling. The ratio of two different sodium occupancy sites (Nae and Naf) in P2‐Na0.67[Mn0.66Ni0.33]O2 cathode is tuned successfully by Sb5+ substitution. The decrease of Naf occupation breaks the Na+/vacancy ordering, makes the redox reaction over the whole electrode particles uniform, and suppresses the “P2‐O2” phase transition in the high‐voltage region, thus improving the overall electrochemical performance effectively.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.202003455</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Antimony ; cathode materials ; Cathodes ; Electrochemical analysis ; Electrode materials ; ENERGY STORAGE ; Ion distribution ; Ion transport ; Manganese ; Metal ions ; Na+/vacancy ; Occupancy ; Oxygen ions ; P2-structure ; Phase transitions ; Redox reactions ; Sodium ; sodium-ion batteries ; Structural stability ; Substitution reactions ; Superstructures ; Transition metals ; X‐ray absorption spectroscopy</subject><ispartof>Advanced energy materials, 2021-04, Vol.11 (13), p.n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3835-2f061902e577a1968d06fa6acbcc7bad160d0540bda8dea8a4b226844ce8f66c3</citedby><cites>FETCH-LOGICAL-c3835-2f061902e577a1968d06fa6acbcc7bad160d0540bda8dea8a4b226844ce8f66c3</cites><orcidid>0000-0002-9791-3468 ; 0000000297913468</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.202003455$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.202003455$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1771141$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Qin‐Chao</creatorcontrib><creatorcontrib>Shadike, Zulipiya</creatorcontrib><creatorcontrib>Li, Xun‐Lu</creatorcontrib><creatorcontrib>Bao, Jian</creatorcontrib><creatorcontrib>Qiu, Qi‐Qi</creatorcontrib><creatorcontrib>Hu, Enyuan</creatorcontrib><creatorcontrib>Bak, Seong‐Min</creatorcontrib><creatorcontrib>Xiao, Xianghui</creatorcontrib><creatorcontrib>Ma, Lu</creatorcontrib><creatorcontrib>Wu, Xiao‐Jing</creatorcontrib><creatorcontrib>Yang, Xiao‐Qing</creatorcontrib><creatorcontrib>Zhou, Yong‐Ning</creatorcontrib><creatorcontrib>Brookhaven National Lab. (BNL), Upton, NY (United States)</creatorcontrib><title>Tuning Sodium Occupancy Sites in P2‐Layered Cathode Material for Enhancing Electrochemical Performance</title><title>Advanced energy materials</title><description>Different sodium occupancy sites in P2‐layered cathode materials can reorganize Na‐ion distribution and modify the Na+/vacancy superstructure, which have a vital impact on the Na‐ion transport and Na storage behavior during charge and discharge processes, but have not been investigated specifically and are not yet well understood. Herein, the occupancy ratio of two different Na sites (sites below transition metal ions and sites below oxygen ions along the c direction) in P2‐Na0.67[Mn0.66Ni0.33]O2 cathode is tuned successfully by inducing Sb5+ ions with strong repulsion toward Na sites right below transition metals. It is found that the decrease of Na occupancy right below transition metal ions is beneficial to the electrochemical performance of P2‐layered cathode materials, regarding cycle stability and rate capability. In situ X‐ray absorption spectroscopy reveals that the reversible Mn3.3+/Mn4+ and Ni2+/Ni3+ redox couples provide charge compensation in different voltage regions of 1.8–2.3 and 2.3–4.2 V, respectively. The transmission X‐ray microscopy confirms the uniform redox reaction over the whole electrode particle. In addition, Sb substitution can suppress the “P2‐O2” phase transition in high voltage region by preventing oxygen gliding in a–b planes, thus ensuring robust structure stability during cycling. The ratio of two different sodium occupancy sites (Nae and Naf) in P2‐Na0.67[Mn0.66Ni0.33]O2 cathode is tuned successfully by Sb5+ substitution. The decrease of Naf occupation breaks the Na+/vacancy ordering, makes the redox reaction over the whole electrode particles uniform, and suppresses the “P2‐O2” phase transition in the high‐voltage region, thus improving the overall electrochemical performance effectively.</description><subject>Antimony</subject><subject>cathode materials</subject><subject>Cathodes</subject><subject>Electrochemical analysis</subject><subject>Electrode materials</subject><subject>ENERGY STORAGE</subject><subject>Ion distribution</subject><subject>Ion transport</subject><subject>Manganese</subject><subject>Metal ions</subject><subject>Na+/vacancy</subject><subject>Occupancy</subject><subject>Oxygen ions</subject><subject>P2-structure</subject><subject>Phase transitions</subject><subject>Redox reactions</subject><subject>Sodium</subject><subject>sodium-ion batteries</subject><subject>Structural stability</subject><subject>Substitution reactions</subject><subject>Superstructures</subject><subject>Transition metals</subject><subject>X‐ray absorption spectroscopy</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkM9KAzEQxhdRsFSvnoOeWyfZbHb3KKX-gaqF1nNIs7NupJvUZBfpzUfwGX0SUyr16FxmYH7f8M2XJBcUxhSAXSu07ZgBA0h5lh0lAyooH4mCw_FhTtlpch7CG8TiJYU0HSTNsrfGvpKFq0zfkmet-42yeksWpsNAjCVz9v35NVNb9FiRieoaVyF5VB16o9akdp5MbRMluyvTNerOO91ga3TcztFHoI1bPEtOarUOeP7bh8nL7XQ5uR_Nnu8eJjezkU6LNBuxGgQtgWGW54qWoqhA1EoovdI6X6mKCqgg47CqVFGhKhRfMRbf5BqLWgidDpPL_V0XOiODjm_oRjtrozNJ85xSTiN0tYc23r33GDr55npvoy_JMih5wcqCR2q8p7R3IXis5cabVvmtpCB3qctd6vKQehSUe8GHWeP2H1reTJ8e_7Q_VWGG5w</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Wang, Qin‐Chao</creator><creator>Shadike, Zulipiya</creator><creator>Li, Xun‐Lu</creator><creator>Bao, Jian</creator><creator>Qiu, Qi‐Qi</creator><creator>Hu, Enyuan</creator><creator>Bak, Seong‐Min</creator><creator>Xiao, Xianghui</creator><creator>Ma, Lu</creator><creator>Wu, Xiao‐Jing</creator><creator>Yang, Xiao‐Qing</creator><creator>Zhou, Yong‐Ning</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-9791-3468</orcidid><orcidid>https://orcid.org/0000000297913468</orcidid></search><sort><creationdate>20210401</creationdate><title>Tuning Sodium Occupancy Sites in P2‐Layered Cathode Material for Enhancing Electrochemical Performance</title><author>Wang, Qin‐Chao ; Shadike, Zulipiya ; Li, Xun‐Lu ; Bao, Jian ; Qiu, Qi‐Qi ; Hu, Enyuan ; Bak, Seong‐Min ; Xiao, Xianghui ; Ma, Lu ; Wu, Xiao‐Jing ; Yang, Xiao‐Qing ; Zhou, Yong‐Ning</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3835-2f061902e577a1968d06fa6acbcc7bad160d0540bda8dea8a4b226844ce8f66c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Antimony</topic><topic>cathode materials</topic><topic>Cathodes</topic><topic>Electrochemical analysis</topic><topic>Electrode materials</topic><topic>ENERGY STORAGE</topic><topic>Ion distribution</topic><topic>Ion transport</topic><topic>Manganese</topic><topic>Metal ions</topic><topic>Na+/vacancy</topic><topic>Occupancy</topic><topic>Oxygen ions</topic><topic>P2-structure</topic><topic>Phase transitions</topic><topic>Redox reactions</topic><topic>Sodium</topic><topic>sodium-ion batteries</topic><topic>Structural stability</topic><topic>Substitution reactions</topic><topic>Superstructures</topic><topic>Transition metals</topic><topic>X‐ray absorption spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Qin‐Chao</creatorcontrib><creatorcontrib>Shadike, Zulipiya</creatorcontrib><creatorcontrib>Li, Xun‐Lu</creatorcontrib><creatorcontrib>Bao, Jian</creatorcontrib><creatorcontrib>Qiu, Qi‐Qi</creatorcontrib><creatorcontrib>Hu, Enyuan</creatorcontrib><creatorcontrib>Bak, Seong‐Min</creatorcontrib><creatorcontrib>Xiao, Xianghui</creatorcontrib><creatorcontrib>Ma, Lu</creatorcontrib><creatorcontrib>Wu, Xiao‐Jing</creatorcontrib><creatorcontrib>Yang, Xiao‐Qing</creatorcontrib><creatorcontrib>Zhou, Yong‐Ning</creatorcontrib><creatorcontrib>Brookhaven National Lab. (BNL), Upton, NY (United States)</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Qin‐Chao</au><au>Shadike, Zulipiya</au><au>Li, Xun‐Lu</au><au>Bao, Jian</au><au>Qiu, Qi‐Qi</au><au>Hu, Enyuan</au><au>Bak, Seong‐Min</au><au>Xiao, Xianghui</au><au>Ma, Lu</au><au>Wu, Xiao‐Jing</au><au>Yang, Xiao‐Qing</au><au>Zhou, Yong‐Ning</au><aucorp>Brookhaven National Lab. (BNL), Upton, NY (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tuning Sodium Occupancy Sites in P2‐Layered Cathode Material for Enhancing Electrochemical Performance</atitle><jtitle>Advanced energy materials</jtitle><date>2021-04-01</date><risdate>2021</risdate><volume>11</volume><issue>13</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Different sodium occupancy sites in P2‐layered cathode materials can reorganize Na‐ion distribution and modify the Na+/vacancy superstructure, which have a vital impact on the Na‐ion transport and Na storage behavior during charge and discharge processes, but have not been investigated specifically and are not yet well understood. Herein, the occupancy ratio of two different Na sites (sites below transition metal ions and sites below oxygen ions along the c direction) in P2‐Na0.67[Mn0.66Ni0.33]O2 cathode is tuned successfully by inducing Sb5+ ions with strong repulsion toward Na sites right below transition metals. It is found that the decrease of Na occupancy right below transition metal ions is beneficial to the electrochemical performance of P2‐layered cathode materials, regarding cycle stability and rate capability. In situ X‐ray absorption spectroscopy reveals that the reversible Mn3.3+/Mn4+ and Ni2+/Ni3+ redox couples provide charge compensation in different voltage regions of 1.8–2.3 and 2.3–4.2 V, respectively. The transmission X‐ray microscopy confirms the uniform redox reaction over the whole electrode particle. In addition, Sb substitution can suppress the “P2‐O2” phase transition in high voltage region by preventing oxygen gliding in a–b planes, thus ensuring robust structure stability during cycling. The ratio of two different sodium occupancy sites (Nae and Naf) in P2‐Na0.67[Mn0.66Ni0.33]O2 cathode is tuned successfully by Sb5+ substitution. The decrease of Naf occupation breaks the Na+/vacancy ordering, makes the redox reaction over the whole electrode particles uniform, and suppresses the “P2‐O2” phase transition in the high‐voltage region, thus improving the overall electrochemical performance effectively.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.202003455</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-9791-3468</orcidid><orcidid>https://orcid.org/0000000297913468</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1614-6832
ispartof Advanced energy materials, 2021-04, Vol.11 (13), p.n/a
issn 1614-6832
1614-6840
language eng
recordid cdi_wiley_primary_10_1002_aenm_202003455_AENM202003455
source Wiley Online Library All Journals
subjects Antimony
cathode materials
Cathodes
Electrochemical analysis
Electrode materials
ENERGY STORAGE
Ion distribution
Ion transport
Manganese
Metal ions
Na+/vacancy
Occupancy
Oxygen ions
P2-structure
Phase transitions
Redox reactions
Sodium
sodium-ion batteries
Structural stability
Substitution reactions
Superstructures
Transition metals
X‐ray absorption spectroscopy
title Tuning Sodium Occupancy Sites in P2‐Layered Cathode Material for Enhancing Electrochemical Performance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T07%3A02%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tuning%20Sodium%20Occupancy%20Sites%20in%20P2%E2%80%90Layered%20Cathode%20Material%20for%20Enhancing%20Electrochemical%20Performance&rft.jtitle=Advanced%20energy%20materials&rft.au=Wang,%20Qin%E2%80%90Chao&rft.aucorp=Brookhaven%20National%20Lab.%20(BNL),%20Upton,%20NY%20(United%20States)&rft.date=2021-04-01&rft.volume=11&rft.issue=13&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.202003455&rft_dat=%3Cproquest_osti_%3E2509482984%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2509482984&rft_id=info:pmid/&rfr_iscdi=true