Li[Ni0.9Co0.09W0.01]O2: A New Type of Layered Oxide Cathode with High Cycling Stability
Substituting W for Al in the Ni‐rich cathode Li[Ni0.885Co0.10Al0.015]O2 (NCA89) produces Li[Ni0.9Co0.09W0.01]O2 (NCW90) with markedly reduced primary particle size. Particle size refinement considerably improves the cathode's cycling stability such that the NCW90 cathode retains 92% of its init...
Gespeichert in:
Veröffentlicht in: | Advanced energy materials 2019-11, Vol.9 (44), p.n/a |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 44 |
container_start_page | |
container_title | Advanced energy materials |
container_volume | 9 |
creator | Ryu, Hoon‐Hee Park, Kang‐Joon Yoon, Dae Ro Aishova, Assylzat Yoon, Chong S. Sun, Yang‐Kook |
description | Substituting W for Al in the Ni‐rich cathode Li[Ni0.885Co0.10Al0.015]O2 (NCA89) produces Li[Ni0.9Co0.09W0.01]O2 (NCW90) with markedly reduced primary particle size. Particle size refinement considerably improves the cathode's cycling stability such that the NCW90 cathode retains 92% of its initial capacity after 1000 cycles (compared to 63% for NCA89), while the cathode produces a high initial discharge capacity of 231.2 mAh g−1 (at 0.1 C). Thus, the proposed NCW90 can deliver high energy density and a long battery lifetime simultaneously, unlike other Ni‐rich layered oxide cathodes. This unprecedented cycling stability is mainly attributed to a series of interparticular microfractures that absorb the anisotropic lattice strain caused by a deleterious phase transition near the charge end, thereby improving the cathode's resistance to fracture. Microcrack suppression preserves the mechanical integrity of the cathode particles during cycling and protects the particle interior from detrimental electrolyte attack. The proposed NCW90 cathode provides an improved material from which a new series of Ni‐rich layered cathode can be developed for next‐generation electric vehicles.
Substituting W for Al in the Ni‐rich cathode Li[Ni0.885Co0.10Al0.015]O2 (NCA89) produces Li[Ni0.9Co0.09W0.01]O2 (NCW90) with markedly reduced primary particle size. Particle size refinement provides improved cycling stability such that the NCW90 cathode retains 92% of its initial capacity after 1000 cycles (compared to 63% for NCA89). Thus, the NCW90 cathode represents a new series of Ni‐rich layered cathodes for next‐generation electric vehicles. |
doi_str_mv | 10.1002/aenm.201902698 |
format | Article |
fullrecord | <record><control><sourceid>wiley</sourceid><recordid>TN_cdi_wiley_primary_10_1002_aenm_201902698_AENM201902698</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>AENM201902698</sourcerecordid><originalsourceid>FETCH-LOGICAL-g1998-4471c98718ce72cc113749b1ef5c6ef0cf5f4a61c96c4acec3c7bc77c87531e83</originalsourceid><addsrcrecordid>eNo9kE1rwkAQhpfSQsV67Xn_QNKZ7Jrd7U2CrYU0HmrxUEpYx4luiR9owObfG2lxDvO8LwxzeIR4RIgRIHnyvN3ECaCDJHX2RvQwRR2lVsPtNavkXgyOxx_oRjsEpXpinoevIkDssh3E4Obdwu9p8ixHsuCTnLV7lrtK5r7lAy_l9DcsWWa-We86nkKzlpOwWsuspTpsV_Kj8YtQh6Z9EHeVr488-GdffL6MZ9kkyqevb9koj1bonI20NkjOGrTEJiFCVEa7BXI1pJQroGpYaZ92NylpT0yKzIKMIWuGCtmqvnB_f0-h5rbcH8LGH9oSobxoKS9ayquWcjQu3q9NnQEZN1YU</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Li[Ni0.9Co0.09W0.01]O2: A New Type of Layered Oxide Cathode with High Cycling Stability</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ryu, Hoon‐Hee ; Park, Kang‐Joon ; Yoon, Dae Ro ; Aishova, Assylzat ; Yoon, Chong S. ; Sun, Yang‐Kook</creator><creatorcontrib>Ryu, Hoon‐Hee ; Park, Kang‐Joon ; Yoon, Dae Ro ; Aishova, Assylzat ; Yoon, Chong S. ; Sun, Yang‐Kook</creatorcontrib><description>Substituting W for Al in the Ni‐rich cathode Li[Ni0.885Co0.10Al0.015]O2 (NCA89) produces Li[Ni0.9Co0.09W0.01]O2 (NCW90) with markedly reduced primary particle size. Particle size refinement considerably improves the cathode's cycling stability such that the NCW90 cathode retains 92% of its initial capacity after 1000 cycles (compared to 63% for NCA89), while the cathode produces a high initial discharge capacity of 231.2 mAh g−1 (at 0.1 C). Thus, the proposed NCW90 can deliver high energy density and a long battery lifetime simultaneously, unlike other Ni‐rich layered oxide cathodes. This unprecedented cycling stability is mainly attributed to a series of interparticular microfractures that absorb the anisotropic lattice strain caused by a deleterious phase transition near the charge end, thereby improving the cathode's resistance to fracture. Microcrack suppression preserves the mechanical integrity of the cathode particles during cycling and protects the particle interior from detrimental electrolyte attack. The proposed NCW90 cathode provides an improved material from which a new series of Ni‐rich layered cathode can be developed for next‐generation electric vehicles.
Substituting W for Al in the Ni‐rich cathode Li[Ni0.885Co0.10Al0.015]O2 (NCA89) produces Li[Ni0.9Co0.09W0.01]O2 (NCW90) with markedly reduced primary particle size. Particle size refinement provides improved cycling stability such that the NCW90 cathode retains 92% of its initial capacity after 1000 cycles (compared to 63% for NCA89). Thus, the NCW90 cathode represents a new series of Ni‐rich layered cathodes for next‐generation electric vehicles.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.201902698</identifier><language>eng</language><subject>Ni‐rich layered cathodes ; novel cathode for electric vehicles ; particle size refinement ; tungsten doping</subject><ispartof>Advanced energy materials, 2019-11, Vol.9 (44), p.n/a</ispartof><rights>2019 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-0117-0170</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.201902698$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.201902698$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Ryu, Hoon‐Hee</creatorcontrib><creatorcontrib>Park, Kang‐Joon</creatorcontrib><creatorcontrib>Yoon, Dae Ro</creatorcontrib><creatorcontrib>Aishova, Assylzat</creatorcontrib><creatorcontrib>Yoon, Chong S.</creatorcontrib><creatorcontrib>Sun, Yang‐Kook</creatorcontrib><title>Li[Ni0.9Co0.09W0.01]O2: A New Type of Layered Oxide Cathode with High Cycling Stability</title><title>Advanced energy materials</title><description>Substituting W for Al in the Ni‐rich cathode Li[Ni0.885Co0.10Al0.015]O2 (NCA89) produces Li[Ni0.9Co0.09W0.01]O2 (NCW90) with markedly reduced primary particle size. Particle size refinement considerably improves the cathode's cycling stability such that the NCW90 cathode retains 92% of its initial capacity after 1000 cycles (compared to 63% for NCA89), while the cathode produces a high initial discharge capacity of 231.2 mAh g−1 (at 0.1 C). Thus, the proposed NCW90 can deliver high energy density and a long battery lifetime simultaneously, unlike other Ni‐rich layered oxide cathodes. This unprecedented cycling stability is mainly attributed to a series of interparticular microfractures that absorb the anisotropic lattice strain caused by a deleterious phase transition near the charge end, thereby improving the cathode's resistance to fracture. Microcrack suppression preserves the mechanical integrity of the cathode particles during cycling and protects the particle interior from detrimental electrolyte attack. The proposed NCW90 cathode provides an improved material from which a new series of Ni‐rich layered cathode can be developed for next‐generation electric vehicles.
Substituting W for Al in the Ni‐rich cathode Li[Ni0.885Co0.10Al0.015]O2 (NCA89) produces Li[Ni0.9Co0.09W0.01]O2 (NCW90) with markedly reduced primary particle size. Particle size refinement provides improved cycling stability such that the NCW90 cathode retains 92% of its initial capacity after 1000 cycles (compared to 63% for NCA89). Thus, the NCW90 cathode represents a new series of Ni‐rich layered cathodes for next‐generation electric vehicles.</description><subject>Ni‐rich layered cathodes</subject><subject>novel cathode for electric vehicles</subject><subject>particle size refinement</subject><subject>tungsten doping</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNo9kE1rwkAQhpfSQsV67Xn_QNKZ7Jrd7U2CrYU0HmrxUEpYx4luiR9owObfG2lxDvO8LwxzeIR4RIgRIHnyvN3ECaCDJHX2RvQwRR2lVsPtNavkXgyOxx_oRjsEpXpinoevIkDssh3E4Obdwu9p8ixHsuCTnLV7lrtK5r7lAy_l9DcsWWa-We86nkKzlpOwWsuspTpsV_Kj8YtQh6Z9EHeVr488-GdffL6MZ9kkyqevb9koj1bonI20NkjOGrTEJiFCVEa7BXI1pJQroGpYaZ92NylpT0yKzIKMIWuGCtmqvnB_f0-h5rbcH8LGH9oSobxoKS9ayquWcjQu3q9NnQEZN1YU</recordid><startdate>20191127</startdate><enddate>20191127</enddate><creator>Ryu, Hoon‐Hee</creator><creator>Park, Kang‐Joon</creator><creator>Yoon, Dae Ro</creator><creator>Aishova, Assylzat</creator><creator>Yoon, Chong S.</creator><creator>Sun, Yang‐Kook</creator><scope>24P</scope><orcidid>https://orcid.org/0000-0002-0117-0170</orcidid></search><sort><creationdate>20191127</creationdate><title>Li[Ni0.9Co0.09W0.01]O2: A New Type of Layered Oxide Cathode with High Cycling Stability</title><author>Ryu, Hoon‐Hee ; Park, Kang‐Joon ; Yoon, Dae Ro ; Aishova, Assylzat ; Yoon, Chong S. ; Sun, Yang‐Kook</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g1998-4471c98718ce72cc113749b1ef5c6ef0cf5f4a61c96c4acec3c7bc77c87531e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Ni‐rich layered cathodes</topic><topic>novel cathode for electric vehicles</topic><topic>particle size refinement</topic><topic>tungsten doping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ryu, Hoon‐Hee</creatorcontrib><creatorcontrib>Park, Kang‐Joon</creatorcontrib><creatorcontrib>Yoon, Dae Ro</creatorcontrib><creatorcontrib>Aishova, Assylzat</creatorcontrib><creatorcontrib>Yoon, Chong S.</creatorcontrib><creatorcontrib>Sun, Yang‐Kook</creatorcontrib><collection>Wiley Online Library Open Access</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ryu, Hoon‐Hee</au><au>Park, Kang‐Joon</au><au>Yoon, Dae Ro</au><au>Aishova, Assylzat</au><au>Yoon, Chong S.</au><au>Sun, Yang‐Kook</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Li[Ni0.9Co0.09W0.01]O2: A New Type of Layered Oxide Cathode with High Cycling Stability</atitle><jtitle>Advanced energy materials</jtitle><date>2019-11-27</date><risdate>2019</risdate><volume>9</volume><issue>44</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Substituting W for Al in the Ni‐rich cathode Li[Ni0.885Co0.10Al0.015]O2 (NCA89) produces Li[Ni0.9Co0.09W0.01]O2 (NCW90) with markedly reduced primary particle size. Particle size refinement considerably improves the cathode's cycling stability such that the NCW90 cathode retains 92% of its initial capacity after 1000 cycles (compared to 63% for NCA89), while the cathode produces a high initial discharge capacity of 231.2 mAh g−1 (at 0.1 C). Thus, the proposed NCW90 can deliver high energy density and a long battery lifetime simultaneously, unlike other Ni‐rich layered oxide cathodes. This unprecedented cycling stability is mainly attributed to a series of interparticular microfractures that absorb the anisotropic lattice strain caused by a deleterious phase transition near the charge end, thereby improving the cathode's resistance to fracture. Microcrack suppression preserves the mechanical integrity of the cathode particles during cycling and protects the particle interior from detrimental electrolyte attack. The proposed NCW90 cathode provides an improved material from which a new series of Ni‐rich layered cathode can be developed for next‐generation electric vehicles.
Substituting W for Al in the Ni‐rich cathode Li[Ni0.885Co0.10Al0.015]O2 (NCA89) produces Li[Ni0.9Co0.09W0.01]O2 (NCW90) with markedly reduced primary particle size. Particle size refinement provides improved cycling stability such that the NCW90 cathode retains 92% of its initial capacity after 1000 cycles (compared to 63% for NCA89). Thus, the NCW90 cathode represents a new series of Ni‐rich layered cathodes for next‐generation electric vehicles.</abstract><doi>10.1002/aenm.201902698</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-0117-0170</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1614-6832 |
ispartof | Advanced energy materials, 2019-11, Vol.9 (44), p.n/a |
issn | 1614-6832 1614-6840 |
language | eng |
recordid | cdi_wiley_primary_10_1002_aenm_201902698_AENM201902698 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Ni‐rich layered cathodes novel cathode for electric vehicles particle size refinement tungsten doping |
title | Li[Ni0.9Co0.09W0.01]O2: A New Type of Layered Oxide Cathode with High Cycling Stability |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T04%3A39%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Li%5BNi0.9Co0.09W0.01%5DO2:%20A%20New%20Type%20of%20Layered%20Oxide%20Cathode%20with%20High%20Cycling%20Stability&rft.jtitle=Advanced%20energy%20materials&rft.au=Ryu,%20Hoon%E2%80%90Hee&rft.date=2019-11-27&rft.volume=9&rft.issue=44&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.201902698&rft_dat=%3Cwiley%3EAENM201902698%3C/wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |