Engineered Matrices Enable the Culture of Human Patient‐Derived Intestinal Organoids

Human intestinal organoids from primary human tissues have the potential to revolutionize personalized medicine and preclinical gastrointestinal disease models. A tunable, fully defined, designer matrix, termed hyaluronan elastin‐like protein (HELP) is reported, which enables the formation, differen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced science 2021-05, Vol.8 (10), p.2004705-n/a
Hauptverfasser: Hunt, Daniel R., Klett, Katarina C., Mascharak, Shamik, Wang, Huiyuan, Gong, Diana, Lou, Junzhe, Li, Xingnan, Cai, Pamela C., Suhar, Riley A., Co, Julia Y., LeSavage, Bauer L., Foster, Abbygail A., Guan, Yuan, Amieva, Manuel R., Peltz, Gary, Xia, Yan, Kuo, Calvin J., Heilshorn, Sarah C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 10
container_start_page 2004705
container_title Advanced science
container_volume 8
creator Hunt, Daniel R.
Klett, Katarina C.
Mascharak, Shamik
Wang, Huiyuan
Gong, Diana
Lou, Junzhe
Li, Xingnan
Cai, Pamela C.
Suhar, Riley A.
Co, Julia Y.
LeSavage, Bauer L.
Foster, Abbygail A.
Guan, Yuan
Amieva, Manuel R.
Peltz, Gary
Xia, Yan
Kuo, Calvin J.
Heilshorn, Sarah C.
description Human intestinal organoids from primary human tissues have the potential to revolutionize personalized medicine and preclinical gastrointestinal disease models. A tunable, fully defined, designer matrix, termed hyaluronan elastin‐like protein (HELP) is reported, which enables the formation, differentiation, and passaging of adult primary tissue‐derived, epithelial‐only intestinal organoids. HELP enables the encapsulation of dissociated patient‐derived cells, which then undergo proliferation and formation of enteroids, spherical structures with polarized internal lumens. After 12 rounds of passaging, enteroid growth in HELP materials is found to be statistically similar to that in animal‐derived matrices. HELP materials also support the differentiation of human enteroids into mature intestinal cell subtypes. HELP matrices allow stiffness, stress relaxation rate, and integrin‐ligand concentration to be independently and quantitatively specified, enabling fundamental studies of organoid–matrix interactions and potential patient‐specific optimization. Organoid formation in HELP materials is most robust in gels with stiffer moduli (G’ ≈ 1 kPa), slower stress relaxation rate (t1/2 ≈ 18 h), and higher integrin ligand concentration (0.5 × 10−3–1 × 10−3 m RGD peptide). This material provides a promising in vitro model for further understanding intestinal development and disease in humans and a reproducible, biodegradable, minimal matrix with no animal‐derived products or synthetic polyethylene glycol for potential clinical translation. A tunable, designer matrix, termed hyaluronan elastin‐like protein (HELP) that enables the formation, differentiation, and passaging of adult primary tissue‐derived organoids is reported. HELP matrices allow stiffness, stress relaxation rate, and integrin‐ligand concentration to be independently and quantitatively specified, enabling fundamental studies of organoid–matrix interactions and potential patient‐specific optimization.
doi_str_mv 10.1002/advs.202004705
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_wiley_primary_10_1002_advs_202004705_ADVS2380</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_51791a5732c64f4090690b8d74723f7c</doaj_id><sourcerecordid>2528719068</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5570-45daef6267f9940bb920a3786b15615b37301814f768343f05099b193cd547733</originalsourceid><addsrcrecordid>eNqFks1uEzEURkcIRKvSLUs0Ehs2Cdf_9gapSkMbqahIQLeWZ8aTOnLsYs-k6o5H6DPyJDikRC0LWNmyj499r7-qeo1gigDwe9Nt8hQDBqAC2LPqECMlJ0RS-vzR_KA6znkFAIgRQZF8WR0QCphTjg6rq3lYumBtsl39yQzJtTbX82Aab-vh2taz0Q9jsnXs6_NxbUL92QzOhuHnj_tTm9ymHFuEwebBBePry7Q0Ibouv6pe9MZne_wwHlXfPs6_zs4nF5dni9nJxaRlTMCEss7YnmMueqUoNI3CYIiQvEGMI9YQQQBJRHvBJaGkBwZKNUiRtmNUCEKOqsXO20Wz0jfJrU2609E4_XshpqU2aXCtt5ohoZBhguCW056CAq6gkZ2gApNetMX1Yee6GZu17dpSZTL-ifTpTnDXehk3WiKCgcoiePcgSPH7WHqi1y631nsTbByzxoyULyDAcUHf_oWu4phKCwslMCWK4UL_i2JYClRq2F473VFtijkn2--fjEBvc6K3OdH7nJQDbx4Xusf_pKIAdAfcOm_v_qPTJ6dXXzCRQH4BOsPF7w</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2528719068</pqid></control><display><type>article</type><title>Engineered Matrices Enable the Culture of Human Patient‐Derived Intestinal Organoids</title><source>MEDLINE</source><source>Wiley Online Library Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Hunt, Daniel R. ; Klett, Katarina C. ; Mascharak, Shamik ; Wang, Huiyuan ; Gong, Diana ; Lou, Junzhe ; Li, Xingnan ; Cai, Pamela C. ; Suhar, Riley A. ; Co, Julia Y. ; LeSavage, Bauer L. ; Foster, Abbygail A. ; Guan, Yuan ; Amieva, Manuel R. ; Peltz, Gary ; Xia, Yan ; Kuo, Calvin J. ; Heilshorn, Sarah C.</creator><creatorcontrib>Hunt, Daniel R. ; Klett, Katarina C. ; Mascharak, Shamik ; Wang, Huiyuan ; Gong, Diana ; Lou, Junzhe ; Li, Xingnan ; Cai, Pamela C. ; Suhar, Riley A. ; Co, Julia Y. ; LeSavage, Bauer L. ; Foster, Abbygail A. ; Guan, Yuan ; Amieva, Manuel R. ; Peltz, Gary ; Xia, Yan ; Kuo, Calvin J. ; Heilshorn, Sarah C.</creatorcontrib><description>Human intestinal organoids from primary human tissues have the potential to revolutionize personalized medicine and preclinical gastrointestinal disease models. A tunable, fully defined, designer matrix, termed hyaluronan elastin‐like protein (HELP) is reported, which enables the formation, differentiation, and passaging of adult primary tissue‐derived, epithelial‐only intestinal organoids. HELP enables the encapsulation of dissociated patient‐derived cells, which then undergo proliferation and formation of enteroids, spherical structures with polarized internal lumens. After 12 rounds of passaging, enteroid growth in HELP materials is found to be statistically similar to that in animal‐derived matrices. HELP materials also support the differentiation of human enteroids into mature intestinal cell subtypes. HELP matrices allow stiffness, stress relaxation rate, and integrin‐ligand concentration to be independently and quantitatively specified, enabling fundamental studies of organoid–matrix interactions and potential patient‐specific optimization. Organoid formation in HELP materials is most robust in gels with stiffer moduli (G’ ≈ 1 kPa), slower stress relaxation rate (t1/2 ≈ 18 h), and higher integrin ligand concentration (0.5 × 10−3–1 × 10−3 m RGD peptide). This material provides a promising in vitro model for further understanding intestinal development and disease in humans and a reproducible, biodegradable, minimal matrix with no animal‐derived products or synthetic polyethylene glycol for potential clinical translation. A tunable, designer matrix, termed hyaluronan elastin‐like protein (HELP) that enables the formation, differentiation, and passaging of adult primary tissue‐derived organoids is reported. HELP matrices allow stiffness, stress relaxation rate, and integrin‐ligand concentration to be independently and quantitatively specified, enabling fundamental studies of organoid–matrix interactions and potential patient‐specific optimization.</description><identifier>ISSN: 2198-3844</identifier><identifier>EISSN: 2198-3844</identifier><identifier>DOI: 10.1002/advs.202004705</identifier><identifier>PMID: 34026461</identifier><language>eng</language><publisher>Germany: John Wiley &amp; Sons, Inc</publisher><subject>3D cell culture ; adult stem cells ; Animals ; Biopolymers ; Biopsy ; Cell Differentiation - physiology ; Cell Survival - physiology ; Elastin - chemistry ; engineered biomaterial ; Epithelial Cells - cytology ; Epithelial Cells - metabolism ; extracellular matrix ; Extracellular Matrix - chemistry ; Gene expression ; Humans ; Hyaluronic acid ; Hyaluronic Acid - chemistry ; Hydrogels ; Intestinal Mucosa - cytology ; Intestinal Mucosa - metabolism ; intestinal organoid ; Ligands ; Localization ; Mice ; Morphology ; Organoids - cytology ; Organoids - metabolism ; Polyethylene glycol ; Proteins ; Stem cells ; Tissue Engineering - methods</subject><ispartof>Advanced science, 2021-05, Vol.8 (10), p.2004705-n/a</ispartof><rights>2021 The Authors. Advanced Science published by Wiley‐VCH GmbH</rights><rights>2021 The Authors. Advanced Science published by Wiley‐VCH GmbH.</rights><rights>2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5570-45daef6267f9940bb920a3786b15615b37301814f768343f05099b193cd547733</citedby><cites>FETCH-LOGICAL-c5570-45daef6267f9940bb920a3786b15615b37301814f768343f05099b193cd547733</cites><orcidid>0000-0002-9801-6304</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8132048/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8132048/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,1411,2096,11541,27901,27902,45550,45551,46027,46451,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34026461$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hunt, Daniel R.</creatorcontrib><creatorcontrib>Klett, Katarina C.</creatorcontrib><creatorcontrib>Mascharak, Shamik</creatorcontrib><creatorcontrib>Wang, Huiyuan</creatorcontrib><creatorcontrib>Gong, Diana</creatorcontrib><creatorcontrib>Lou, Junzhe</creatorcontrib><creatorcontrib>Li, Xingnan</creatorcontrib><creatorcontrib>Cai, Pamela C.</creatorcontrib><creatorcontrib>Suhar, Riley A.</creatorcontrib><creatorcontrib>Co, Julia Y.</creatorcontrib><creatorcontrib>LeSavage, Bauer L.</creatorcontrib><creatorcontrib>Foster, Abbygail A.</creatorcontrib><creatorcontrib>Guan, Yuan</creatorcontrib><creatorcontrib>Amieva, Manuel R.</creatorcontrib><creatorcontrib>Peltz, Gary</creatorcontrib><creatorcontrib>Xia, Yan</creatorcontrib><creatorcontrib>Kuo, Calvin J.</creatorcontrib><creatorcontrib>Heilshorn, Sarah C.</creatorcontrib><title>Engineered Matrices Enable the Culture of Human Patient‐Derived Intestinal Organoids</title><title>Advanced science</title><addtitle>Adv Sci (Weinh)</addtitle><description>Human intestinal organoids from primary human tissues have the potential to revolutionize personalized medicine and preclinical gastrointestinal disease models. A tunable, fully defined, designer matrix, termed hyaluronan elastin‐like protein (HELP) is reported, which enables the formation, differentiation, and passaging of adult primary tissue‐derived, epithelial‐only intestinal organoids. HELP enables the encapsulation of dissociated patient‐derived cells, which then undergo proliferation and formation of enteroids, spherical structures with polarized internal lumens. After 12 rounds of passaging, enteroid growth in HELP materials is found to be statistically similar to that in animal‐derived matrices. HELP materials also support the differentiation of human enteroids into mature intestinal cell subtypes. HELP matrices allow stiffness, stress relaxation rate, and integrin‐ligand concentration to be independently and quantitatively specified, enabling fundamental studies of organoid–matrix interactions and potential patient‐specific optimization. Organoid formation in HELP materials is most robust in gels with stiffer moduli (G’ ≈ 1 kPa), slower stress relaxation rate (t1/2 ≈ 18 h), and higher integrin ligand concentration (0.5 × 10−3–1 × 10−3 m RGD peptide). This material provides a promising in vitro model for further understanding intestinal development and disease in humans and a reproducible, biodegradable, minimal matrix with no animal‐derived products or synthetic polyethylene glycol for potential clinical translation. A tunable, designer matrix, termed hyaluronan elastin‐like protein (HELP) that enables the formation, differentiation, and passaging of adult primary tissue‐derived organoids is reported. HELP matrices allow stiffness, stress relaxation rate, and integrin‐ligand concentration to be independently and quantitatively specified, enabling fundamental studies of organoid–matrix interactions and potential patient‐specific optimization.</description><subject>3D cell culture</subject><subject>adult stem cells</subject><subject>Animals</subject><subject>Biopolymers</subject><subject>Biopsy</subject><subject>Cell Differentiation - physiology</subject><subject>Cell Survival - physiology</subject><subject>Elastin - chemistry</subject><subject>engineered biomaterial</subject><subject>Epithelial Cells - cytology</subject><subject>Epithelial Cells - metabolism</subject><subject>extracellular matrix</subject><subject>Extracellular Matrix - chemistry</subject><subject>Gene expression</subject><subject>Humans</subject><subject>Hyaluronic acid</subject><subject>Hyaluronic Acid - chemistry</subject><subject>Hydrogels</subject><subject>Intestinal Mucosa - cytology</subject><subject>Intestinal Mucosa - metabolism</subject><subject>intestinal organoid</subject><subject>Ligands</subject><subject>Localization</subject><subject>Mice</subject><subject>Morphology</subject><subject>Organoids - cytology</subject><subject>Organoids - metabolism</subject><subject>Polyethylene glycol</subject><subject>Proteins</subject><subject>Stem cells</subject><subject>Tissue Engineering - methods</subject><issn>2198-3844</issn><issn>2198-3844</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><sourceid>DOA</sourceid><recordid>eNqFks1uEzEURkcIRKvSLUs0Ehs2Cdf_9gapSkMbqahIQLeWZ8aTOnLsYs-k6o5H6DPyJDikRC0LWNmyj499r7-qeo1gigDwe9Nt8hQDBqAC2LPqECMlJ0RS-vzR_KA6znkFAIgRQZF8WR0QCphTjg6rq3lYumBtsl39yQzJtTbX82Aab-vh2taz0Q9jsnXs6_NxbUL92QzOhuHnj_tTm9ymHFuEwebBBePry7Q0Ibouv6pe9MZne_wwHlXfPs6_zs4nF5dni9nJxaRlTMCEss7YnmMueqUoNI3CYIiQvEGMI9YQQQBJRHvBJaGkBwZKNUiRtmNUCEKOqsXO20Wz0jfJrU2609E4_XshpqU2aXCtt5ohoZBhguCW056CAq6gkZ2gApNetMX1Yee6GZu17dpSZTL-ifTpTnDXehk3WiKCgcoiePcgSPH7WHqi1y631nsTbByzxoyULyDAcUHf_oWu4phKCwslMCWK4UL_i2JYClRq2F473VFtijkn2--fjEBvc6K3OdH7nJQDbx4Xusf_pKIAdAfcOm_v_qPTJ6dXXzCRQH4BOsPF7w</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Hunt, Daniel R.</creator><creator>Klett, Katarina C.</creator><creator>Mascharak, Shamik</creator><creator>Wang, Huiyuan</creator><creator>Gong, Diana</creator><creator>Lou, Junzhe</creator><creator>Li, Xingnan</creator><creator>Cai, Pamela C.</creator><creator>Suhar, Riley A.</creator><creator>Co, Julia Y.</creator><creator>LeSavage, Bauer L.</creator><creator>Foster, Abbygail A.</creator><creator>Guan, Yuan</creator><creator>Amieva, Manuel R.</creator><creator>Peltz, Gary</creator><creator>Xia, Yan</creator><creator>Kuo, Calvin J.</creator><creator>Heilshorn, Sarah C.</creator><general>John Wiley &amp; Sons, Inc</general><general>John Wiley and Sons Inc</general><general>Wiley</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9801-6304</orcidid></search><sort><creationdate>20210501</creationdate><title>Engineered Matrices Enable the Culture of Human Patient‐Derived Intestinal Organoids</title><author>Hunt, Daniel R. ; Klett, Katarina C. ; Mascharak, Shamik ; Wang, Huiyuan ; Gong, Diana ; Lou, Junzhe ; Li, Xingnan ; Cai, Pamela C. ; Suhar, Riley A. ; Co, Julia Y. ; LeSavage, Bauer L. ; Foster, Abbygail A. ; Guan, Yuan ; Amieva, Manuel R. ; Peltz, Gary ; Xia, Yan ; Kuo, Calvin J. ; Heilshorn, Sarah C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5570-45daef6267f9940bb920a3786b15615b37301814f768343f05099b193cd547733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>3D cell culture</topic><topic>adult stem cells</topic><topic>Animals</topic><topic>Biopolymers</topic><topic>Biopsy</topic><topic>Cell Differentiation - physiology</topic><topic>Cell Survival - physiology</topic><topic>Elastin - chemistry</topic><topic>engineered biomaterial</topic><topic>Epithelial Cells - cytology</topic><topic>Epithelial Cells - metabolism</topic><topic>extracellular matrix</topic><topic>Extracellular Matrix - chemistry</topic><topic>Gene expression</topic><topic>Humans</topic><topic>Hyaluronic acid</topic><topic>Hyaluronic Acid - chemistry</topic><topic>Hydrogels</topic><topic>Intestinal Mucosa - cytology</topic><topic>Intestinal Mucosa - metabolism</topic><topic>intestinal organoid</topic><topic>Ligands</topic><topic>Localization</topic><topic>Mice</topic><topic>Morphology</topic><topic>Organoids - cytology</topic><topic>Organoids - metabolism</topic><topic>Polyethylene glycol</topic><topic>Proteins</topic><topic>Stem cells</topic><topic>Tissue Engineering - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hunt, Daniel R.</creatorcontrib><creatorcontrib>Klett, Katarina C.</creatorcontrib><creatorcontrib>Mascharak, Shamik</creatorcontrib><creatorcontrib>Wang, Huiyuan</creatorcontrib><creatorcontrib>Gong, Diana</creatorcontrib><creatorcontrib>Lou, Junzhe</creatorcontrib><creatorcontrib>Li, Xingnan</creatorcontrib><creatorcontrib>Cai, Pamela C.</creatorcontrib><creatorcontrib>Suhar, Riley A.</creatorcontrib><creatorcontrib>Co, Julia Y.</creatorcontrib><creatorcontrib>LeSavage, Bauer L.</creatorcontrib><creatorcontrib>Foster, Abbygail A.</creatorcontrib><creatorcontrib>Guan, Yuan</creatorcontrib><creatorcontrib>Amieva, Manuel R.</creatorcontrib><creatorcontrib>Peltz, Gary</creatorcontrib><creatorcontrib>Xia, Yan</creatorcontrib><creatorcontrib>Kuo, Calvin J.</creatorcontrib><creatorcontrib>Heilshorn, Sarah C.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Advanced science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hunt, Daniel R.</au><au>Klett, Katarina C.</au><au>Mascharak, Shamik</au><au>Wang, Huiyuan</au><au>Gong, Diana</au><au>Lou, Junzhe</au><au>Li, Xingnan</au><au>Cai, Pamela C.</au><au>Suhar, Riley A.</au><au>Co, Julia Y.</au><au>LeSavage, Bauer L.</au><au>Foster, Abbygail A.</au><au>Guan, Yuan</au><au>Amieva, Manuel R.</au><au>Peltz, Gary</au><au>Xia, Yan</au><au>Kuo, Calvin J.</au><au>Heilshorn, Sarah C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineered Matrices Enable the Culture of Human Patient‐Derived Intestinal Organoids</atitle><jtitle>Advanced science</jtitle><addtitle>Adv Sci (Weinh)</addtitle><date>2021-05-01</date><risdate>2021</risdate><volume>8</volume><issue>10</issue><spage>2004705</spage><epage>n/a</epage><pages>2004705-n/a</pages><issn>2198-3844</issn><eissn>2198-3844</eissn><abstract>Human intestinal organoids from primary human tissues have the potential to revolutionize personalized medicine and preclinical gastrointestinal disease models. A tunable, fully defined, designer matrix, termed hyaluronan elastin‐like protein (HELP) is reported, which enables the formation, differentiation, and passaging of adult primary tissue‐derived, epithelial‐only intestinal organoids. HELP enables the encapsulation of dissociated patient‐derived cells, which then undergo proliferation and formation of enteroids, spherical structures with polarized internal lumens. After 12 rounds of passaging, enteroid growth in HELP materials is found to be statistically similar to that in animal‐derived matrices. HELP materials also support the differentiation of human enteroids into mature intestinal cell subtypes. HELP matrices allow stiffness, stress relaxation rate, and integrin‐ligand concentration to be independently and quantitatively specified, enabling fundamental studies of organoid–matrix interactions and potential patient‐specific optimization. Organoid formation in HELP materials is most robust in gels with stiffer moduli (G’ ≈ 1 kPa), slower stress relaxation rate (t1/2 ≈ 18 h), and higher integrin ligand concentration (0.5 × 10−3–1 × 10−3 m RGD peptide). This material provides a promising in vitro model for further understanding intestinal development and disease in humans and a reproducible, biodegradable, minimal matrix with no animal‐derived products or synthetic polyethylene glycol for potential clinical translation. A tunable, designer matrix, termed hyaluronan elastin‐like protein (HELP) that enables the formation, differentiation, and passaging of adult primary tissue‐derived organoids is reported. HELP matrices allow stiffness, stress relaxation rate, and integrin‐ligand concentration to be independently and quantitatively specified, enabling fundamental studies of organoid–matrix interactions and potential patient‐specific optimization.</abstract><cop>Germany</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>34026461</pmid><doi>10.1002/advs.202004705</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9801-6304</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2198-3844
ispartof Advanced science, 2021-05, Vol.8 (10), p.2004705-n/a
issn 2198-3844
2198-3844
language eng
recordid cdi_wiley_primary_10_1002_advs_202004705_ADVS2380
source MEDLINE; Wiley Online Library Open Access; DOAJ Directory of Open Access Journals; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects 3D cell culture
adult stem cells
Animals
Biopolymers
Biopsy
Cell Differentiation - physiology
Cell Survival - physiology
Elastin - chemistry
engineered biomaterial
Epithelial Cells - cytology
Epithelial Cells - metabolism
extracellular matrix
Extracellular Matrix - chemistry
Gene expression
Humans
Hyaluronic acid
Hyaluronic Acid - chemistry
Hydrogels
Intestinal Mucosa - cytology
Intestinal Mucosa - metabolism
intestinal organoid
Ligands
Localization
Mice
Morphology
Organoids - cytology
Organoids - metabolism
Polyethylene glycol
Proteins
Stem cells
Tissue Engineering - methods
title Engineered Matrices Enable the Culture of Human Patient‐Derived Intestinal Organoids
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T11%3A23%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineered%20Matrices%20Enable%20the%20Culture%20of%20Human%20Patient%E2%80%90Derived%20Intestinal%20Organoids&rft.jtitle=Advanced%20science&rft.au=Hunt,%20Daniel%20R.&rft.date=2021-05-01&rft.volume=8&rft.issue=10&rft.spage=2004705&rft.epage=n/a&rft.pages=2004705-n/a&rft.issn=2198-3844&rft.eissn=2198-3844&rft_id=info:doi/10.1002/advs.202004705&rft_dat=%3Cproquest_doaj_%3E2528719068%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2528719068&rft_id=info:pmid/34026461&rft_doaj_id=oai_doaj_org_article_51791a5732c64f4090690b8d74723f7c&rfr_iscdi=true