La2NiO4+δ‐Based Memristive Devices Integrated on Si‐Based Substrates

Valence change memories, in which internal redox reactions control the change in resistance are promising candidates for resistive random access memories (ReRAMs) and neuromorphic computing elements. In this context, La2NiO4+δ (L2NO4), a mixed ionic‐electronic conducting oxide, well known for its hi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials technologies 2022-11, Vol.7 (11), p.n/a
Hauptverfasser: Khuu, Thoai‐Khanh, Lefèvre, Gauthier, Jiménez, Carmen, Roussel, Hervé, Riaz, Adeel, Blonkowski, Serge, Jalaguier, Eric, Bsiesy, Ahmad, Burriel, Mónica
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 11
container_start_page
container_title Advanced materials technologies
container_volume 7
creator Khuu, Thoai‐Khanh
Lefèvre, Gauthier
Jiménez, Carmen
Roussel, Hervé
Riaz, Adeel
Blonkowski, Serge
Jalaguier, Eric
Bsiesy, Ahmad
Burriel, Mónica
description Valence change memories, in which internal redox reactions control the change in resistance are promising candidates for resistive random access memories (ReRAMs) and neuromorphic computing elements. In this context, La2NiO4+δ (L2NO4), a mixed ionic‐electronic conducting oxide, well known for its highly mobile oxygen interstitial ions, emerges as a potential switching material for novel L2NO4‐based memristive devices. However, their integration in complementary metal oxide semiconductor (CMOS) technology still has to be demonstrated, as the major focus of previous studies has been carried out on epitaxial films grown on single crystals. In this work, the optimization of the deposition temperature and precursor solution composition is presented, allowing to obtain high‐quality polycrystalline L2NO4 thin films grown by metal organic chemical vapor deposition on a platinized silicon substrate, and to use these films to build memristive devices in vertical configuration with Ti top electrodes. A bipolar analog‐type transition in resistance can be achieved in Ti/L2NO4/Pt memristive devices. While the “forming” process required for the devices based on nonoptimized L2NO4 thin films is considered as a drawback, the Ti/optimized L2NO4/Pt devices are forming‐free and exhibit a good cyclability. These results prove the switching response of L2NO4‐based devices in a vertical configuration for the first time. The growth of high‐quality La2NiO4+δ (L2NO4) is achieved by PI‐MOCVD, in which the deposition temperature and film composition are easily tuned. When L2NO4 is used as a sandwiched layer in a memristive device, analogue transitions in the SET and RESET processes are obtained. While Ti/non‐optimized L2NO4/Pt devices require a ‘forming’ step, Ti/optimized L2NO4/Pt devices are forming‐free and have good endurance.
doi_str_mv 10.1002/admt.202200329
format Article
fullrecord <record><control><sourceid>wiley</sourceid><recordid>TN_cdi_wiley_primary_10_1002_admt_202200329_ADMT202200329</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ADMT202200329</sourcerecordid><originalsourceid>FETCH-LOGICAL-s2459-e7fca23f4f734895ae06dac04b416b77be11bc371084e4afd2b76af980441d5d3</originalsourceid><addsrcrecordid>eNpNkEtOwzAYhC0EElXplnX2KOX3I3G8LC2PSC1dtEjsLDv-jYyaguJQ1B1H4DCcg0NwEohAEauZ0Yxm8RFySmFMAdi5cXU7ZsAYAGfqgAwYz7NUgro__OePySjGRwCgiua8YANSzg27DUtx9vnx9fZ-YSK6ZIF1E2IbdpjMcBcqjEm5bfGhMe1P-7RNVqHfrl5sbLsinpAjbzYRR386JHdXl-vpTTpfXpfTyTyNTGQqRekrw7gXXnJRqMwg5M5UIKyguZXSIqW24pJCIVAY75iVufGqACGoyxwfEvX7-xo2uNfPTahNs9cUdAdCdyB0D0JPZot1n_g3nohWkA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>La2NiO4+δ‐Based Memristive Devices Integrated on Si‐Based Substrates</title><source>Wiley Online Library Journals</source><creator>Khuu, Thoai‐Khanh ; Lefèvre, Gauthier ; Jiménez, Carmen ; Roussel, Hervé ; Riaz, Adeel ; Blonkowski, Serge ; Jalaguier, Eric ; Bsiesy, Ahmad ; Burriel, Mónica</creator><creatorcontrib>Khuu, Thoai‐Khanh ; Lefèvre, Gauthier ; Jiménez, Carmen ; Roussel, Hervé ; Riaz, Adeel ; Blonkowski, Serge ; Jalaguier, Eric ; Bsiesy, Ahmad ; Burriel, Mónica</creatorcontrib><description>Valence change memories, in which internal redox reactions control the change in resistance are promising candidates for resistive random access memories (ReRAMs) and neuromorphic computing elements. In this context, La2NiO4+δ (L2NO4), a mixed ionic‐electronic conducting oxide, well known for its highly mobile oxygen interstitial ions, emerges as a potential switching material for novel L2NO4‐based memristive devices. However, their integration in complementary metal oxide semiconductor (CMOS) technology still has to be demonstrated, as the major focus of previous studies has been carried out on epitaxial films grown on single crystals. In this work, the optimization of the deposition temperature and precursor solution composition is presented, allowing to obtain high‐quality polycrystalline L2NO4 thin films grown by metal organic chemical vapor deposition on a platinized silicon substrate, and to use these films to build memristive devices in vertical configuration with Ti top electrodes. A bipolar analog‐type transition in resistance can be achieved in Ti/L2NO4/Pt memristive devices. While the “forming” process required for the devices based on nonoptimized L2NO4 thin films is considered as a drawback, the Ti/optimized L2NO4/Pt devices are forming‐free and exhibit a good cyclability. These results prove the switching response of L2NO4‐based devices in a vertical configuration for the first time. The growth of high‐quality La2NiO4+δ (L2NO4) is achieved by PI‐MOCVD, in which the deposition temperature and film composition are easily tuned. When L2NO4 is used as a sandwiched layer in a memristive device, analogue transitions in the SET and RESET processes are obtained. While Ti/non‐optimized L2NO4/Pt devices require a ‘forming’ step, Ti/optimized L2NO4/Pt devices are forming‐free and have good endurance.</description><identifier>ISSN: 2365-709X</identifier><identifier>EISSN: 2365-709X</identifier><identifier>DOI: 10.1002/admt.202200329</identifier><language>eng</language><subject>lanthanum nickelate ; memristive devices ; metal organic chemical vapor deposition (MOCVD) ; resistive switching ; valence change memories (VCMs)</subject><ispartof>Advanced materials technologies, 2022-11, Vol.7 (11), p.n/a</ispartof><rights>2022 The Authors. Advanced Materials Technologies published by Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-7973-7421 ; 0000-0002-4077-0937 ; 0000-0001-9455-6779 ; 0000-0002-9601-1825</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadmt.202200329$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadmt.202200329$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Khuu, Thoai‐Khanh</creatorcontrib><creatorcontrib>Lefèvre, Gauthier</creatorcontrib><creatorcontrib>Jiménez, Carmen</creatorcontrib><creatorcontrib>Roussel, Hervé</creatorcontrib><creatorcontrib>Riaz, Adeel</creatorcontrib><creatorcontrib>Blonkowski, Serge</creatorcontrib><creatorcontrib>Jalaguier, Eric</creatorcontrib><creatorcontrib>Bsiesy, Ahmad</creatorcontrib><creatorcontrib>Burriel, Mónica</creatorcontrib><title>La2NiO4+δ‐Based Memristive Devices Integrated on Si‐Based Substrates</title><title>Advanced materials technologies</title><description>Valence change memories, in which internal redox reactions control the change in resistance are promising candidates for resistive random access memories (ReRAMs) and neuromorphic computing elements. In this context, La2NiO4+δ (L2NO4), a mixed ionic‐electronic conducting oxide, well known for its highly mobile oxygen interstitial ions, emerges as a potential switching material for novel L2NO4‐based memristive devices. However, their integration in complementary metal oxide semiconductor (CMOS) technology still has to be demonstrated, as the major focus of previous studies has been carried out on epitaxial films grown on single crystals. In this work, the optimization of the deposition temperature and precursor solution composition is presented, allowing to obtain high‐quality polycrystalline L2NO4 thin films grown by metal organic chemical vapor deposition on a platinized silicon substrate, and to use these films to build memristive devices in vertical configuration with Ti top electrodes. A bipolar analog‐type transition in resistance can be achieved in Ti/L2NO4/Pt memristive devices. While the “forming” process required for the devices based on nonoptimized L2NO4 thin films is considered as a drawback, the Ti/optimized L2NO4/Pt devices are forming‐free and exhibit a good cyclability. These results prove the switching response of L2NO4‐based devices in a vertical configuration for the first time. The growth of high‐quality La2NiO4+δ (L2NO4) is achieved by PI‐MOCVD, in which the deposition temperature and film composition are easily tuned. When L2NO4 is used as a sandwiched layer in a memristive device, analogue transitions in the SET and RESET processes are obtained. While Ti/non‐optimized L2NO4/Pt devices require a ‘forming’ step, Ti/optimized L2NO4/Pt devices are forming‐free and have good endurance.</description><subject>lanthanum nickelate</subject><subject>memristive devices</subject><subject>metal organic chemical vapor deposition (MOCVD)</subject><subject>resistive switching</subject><subject>valence change memories (VCMs)</subject><issn>2365-709X</issn><issn>2365-709X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNpNkEtOwzAYhC0EElXplnX2KOX3I3G8LC2PSC1dtEjsLDv-jYyaguJQ1B1H4DCcg0NwEohAEauZ0Yxm8RFySmFMAdi5cXU7ZsAYAGfqgAwYz7NUgro__OePySjGRwCgiua8YANSzg27DUtx9vnx9fZ-YSK6ZIF1E2IbdpjMcBcqjEm5bfGhMe1P-7RNVqHfrl5sbLsinpAjbzYRR386JHdXl-vpTTpfXpfTyTyNTGQqRekrw7gXXnJRqMwg5M5UIKyguZXSIqW24pJCIVAY75iVufGqACGoyxwfEvX7-xo2uNfPTahNs9cUdAdCdyB0D0JPZot1n_g3nohWkA</recordid><startdate>202211</startdate><enddate>202211</enddate><creator>Khuu, Thoai‐Khanh</creator><creator>Lefèvre, Gauthier</creator><creator>Jiménez, Carmen</creator><creator>Roussel, Hervé</creator><creator>Riaz, Adeel</creator><creator>Blonkowski, Serge</creator><creator>Jalaguier, Eric</creator><creator>Bsiesy, Ahmad</creator><creator>Burriel, Mónica</creator><scope>24P</scope><scope>WIN</scope><orcidid>https://orcid.org/0000-0002-7973-7421</orcidid><orcidid>https://orcid.org/0000-0002-4077-0937</orcidid><orcidid>https://orcid.org/0000-0001-9455-6779</orcidid><orcidid>https://orcid.org/0000-0002-9601-1825</orcidid></search><sort><creationdate>202211</creationdate><title>La2NiO4+δ‐Based Memristive Devices Integrated on Si‐Based Substrates</title><author>Khuu, Thoai‐Khanh ; Lefèvre, Gauthier ; Jiménez, Carmen ; Roussel, Hervé ; Riaz, Adeel ; Blonkowski, Serge ; Jalaguier, Eric ; Bsiesy, Ahmad ; Burriel, Mónica</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-s2459-e7fca23f4f734895ae06dac04b416b77be11bc371084e4afd2b76af980441d5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>lanthanum nickelate</topic><topic>memristive devices</topic><topic>metal organic chemical vapor deposition (MOCVD)</topic><topic>resistive switching</topic><topic>valence change memories (VCMs)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khuu, Thoai‐Khanh</creatorcontrib><creatorcontrib>Lefèvre, Gauthier</creatorcontrib><creatorcontrib>Jiménez, Carmen</creatorcontrib><creatorcontrib>Roussel, Hervé</creatorcontrib><creatorcontrib>Riaz, Adeel</creatorcontrib><creatorcontrib>Blonkowski, Serge</creatorcontrib><creatorcontrib>Jalaguier, Eric</creatorcontrib><creatorcontrib>Bsiesy, Ahmad</creatorcontrib><creatorcontrib>Burriel, Mónica</creatorcontrib><collection>Wiley_OA刊</collection><collection>Wiley Free Archive</collection><jtitle>Advanced materials technologies</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khuu, Thoai‐Khanh</au><au>Lefèvre, Gauthier</au><au>Jiménez, Carmen</au><au>Roussel, Hervé</au><au>Riaz, Adeel</au><au>Blonkowski, Serge</au><au>Jalaguier, Eric</au><au>Bsiesy, Ahmad</au><au>Burriel, Mónica</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>La2NiO4+δ‐Based Memristive Devices Integrated on Si‐Based Substrates</atitle><jtitle>Advanced materials technologies</jtitle><date>2022-11</date><risdate>2022</risdate><volume>7</volume><issue>11</issue><epage>n/a</epage><issn>2365-709X</issn><eissn>2365-709X</eissn><abstract>Valence change memories, in which internal redox reactions control the change in resistance are promising candidates for resistive random access memories (ReRAMs) and neuromorphic computing elements. In this context, La2NiO4+δ (L2NO4), a mixed ionic‐electronic conducting oxide, well known for its highly mobile oxygen interstitial ions, emerges as a potential switching material for novel L2NO4‐based memristive devices. However, their integration in complementary metal oxide semiconductor (CMOS) technology still has to be demonstrated, as the major focus of previous studies has been carried out on epitaxial films grown on single crystals. In this work, the optimization of the deposition temperature and precursor solution composition is presented, allowing to obtain high‐quality polycrystalline L2NO4 thin films grown by metal organic chemical vapor deposition on a platinized silicon substrate, and to use these films to build memristive devices in vertical configuration with Ti top electrodes. A bipolar analog‐type transition in resistance can be achieved in Ti/L2NO4/Pt memristive devices. While the “forming” process required for the devices based on nonoptimized L2NO4 thin films is considered as a drawback, the Ti/optimized L2NO4/Pt devices are forming‐free and exhibit a good cyclability. These results prove the switching response of L2NO4‐based devices in a vertical configuration for the first time. The growth of high‐quality La2NiO4+δ (L2NO4) is achieved by PI‐MOCVD, in which the deposition temperature and film composition are easily tuned. When L2NO4 is used as a sandwiched layer in a memristive device, analogue transitions in the SET and RESET processes are obtained. While Ti/non‐optimized L2NO4/Pt devices require a ‘forming’ step, Ti/optimized L2NO4/Pt devices are forming‐free and have good endurance.</abstract><doi>10.1002/admt.202200329</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-7973-7421</orcidid><orcidid>https://orcid.org/0000-0002-4077-0937</orcidid><orcidid>https://orcid.org/0000-0001-9455-6779</orcidid><orcidid>https://orcid.org/0000-0002-9601-1825</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2365-709X
ispartof Advanced materials technologies, 2022-11, Vol.7 (11), p.n/a
issn 2365-709X
2365-709X
language eng
recordid cdi_wiley_primary_10_1002_admt_202200329_ADMT202200329
source Wiley Online Library Journals
subjects lanthanum nickelate
memristive devices
metal organic chemical vapor deposition (MOCVD)
resistive switching
valence change memories (VCMs)
title La2NiO4+δ‐Based Memristive Devices Integrated on Si‐Based Substrates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A23%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=La2NiO4+%CE%B4%E2%80%90Based%20Memristive%20Devices%20Integrated%20on%20Si%E2%80%90Based%20Substrates&rft.jtitle=Advanced%20materials%20technologies&rft.au=Khuu,%20Thoai%E2%80%90Khanh&rft.date=2022-11&rft.volume=7&rft.issue=11&rft.epage=n/a&rft.issn=2365-709X&rft.eissn=2365-709X&rft_id=info:doi/10.1002/admt.202200329&rft_dat=%3Cwiley%3EADMT202200329%3C/wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true