Hydroxypillar[5]arene‐Confined Silver Nanocatalyst for Selective Electrochemical Reduction of CO2 to Ethanol
CO is usually the dominant product on silver‐based catalysts in electrochemical CO2 reduction reaction (CO2RR) possibly due to weak *CO adsorption. In this report, a hydroxypillar[5]arene‐extended porous polymer‐confined silver catalyst (PAF‐PA5‐Ag‐0.8) for electrochemical CO2RR which can selectivel...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2023-07, Vol.33 (29), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 29 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 33 |
creator | Qin, Junjie Wang, Tao Zhai, Mingming Wu, Chengyu Liu, Yahu A. Yang, Bo Yang, Hui Wen, Ke Hu, Weibo |
description | CO is usually the dominant product on silver‐based catalysts in electrochemical CO2 reduction reaction (CO2RR) possibly due to weak *CO adsorption. In this report, a hydroxypillar[5]arene‐extended porous polymer‐confined silver catalyst (PAF‐PA5‐Ag‐0.8) for electrochemical CO2RR which can selectively produce ethanol with a maximum Faradaic efficiency of 55% at 11 mA cm−1 is described. The study reveals that the hydroxypillar[5]arene‐confined Ag clusters are the active sites for ethanol formation. Moreover, temperature‐programmed desorption measurements demonstrate an enhanced adsorption strength of CO* on PAF‐PA5‐Ag‐0.8 compared with that on commercial Ag nanoparticles, which is favored by the C‐C coupling to form ethanol. The density functional theory study indicates that the confined Ag clusters in PAF‐PA5‐Ag‐0.8 contribute to high C2 selectivity in CO2RR through facilitating *COOH formation, stabilizing *CO intermediates, and inhibiting hydrogen evolution. This work provides a new design strategy by modulating *CO adsorption strength on non‐copper electrocatalysts in converting CO2 into “green” C2 products.
A supramolecular approach is employed to construct Ag cluster catalysts for electrochemical CO2 reduction reaction. The hydroxypillar[5]arene‐confined Ag clusters in a porous aromatic polymer can electrochemically reduce CO2 to ethanol selectively owing to the synergetic effect between hydroxypillar[5]arene's OH groups and the Ag species to facilitate *COOH formation, stabilize *CO intermediates, and inhibit hydrogen evolution. |
doi_str_mv | 10.1002/adfm.202300697 |
format | Article |
fullrecord | <record><control><sourceid>wiley</sourceid><recordid>TN_cdi_wiley_primary_10_1002_adfm_202300697_ADFM202300697</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ADFM202300697</sourcerecordid><originalsourceid>FETCH-LOGICAL-s2057-6ef3d63a8bf33e433288b921ba5f7b7936056a2f60c7e21b31ed43fea5c507283</originalsourceid><addsrcrecordid>eNo9kN1KwzAYhoMoOKenHucGOr8ka9Iejro5YTpwCoJISdsvLJI1I63TnnkJXqNX4obSo_cP3oOHkEsGIwbAr3RlNiMOXADIVB2RAZNMRgJ4ctx79nxKzprmDYApJcYDUs-7KvjPbmud0-ElftUBa_z5-s58bWyNFV1Zt8NA73XtS91q1zUtNT7QFTosW7tDOj2Y4Ms1bmypHX3A6n2_-Jp6Q7Mlp62n03a9P3Dn5MRo1-DFvw7J02z6mM2jxfLmNpssooZDrCKJRlRS6KQwQuBYCJ4kRcpZoWOjCpUKCbHU3EgoFe5rwbAaC4M6LmNQPBFDkv79fliHXb4NdqNDlzPID6jyA6q8R5VPrmd3fRK_EDxidQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Hydroxypillar[5]arene‐Confined Silver Nanocatalyst for Selective Electrochemical Reduction of CO2 to Ethanol</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Qin, Junjie ; Wang, Tao ; Zhai, Mingming ; Wu, Chengyu ; Liu, Yahu A. ; Yang, Bo ; Yang, Hui ; Wen, Ke ; Hu, Weibo</creator><creatorcontrib>Qin, Junjie ; Wang, Tao ; Zhai, Mingming ; Wu, Chengyu ; Liu, Yahu A. ; Yang, Bo ; Yang, Hui ; Wen, Ke ; Hu, Weibo</creatorcontrib><description>CO is usually the dominant product on silver‐based catalysts in electrochemical CO2 reduction reaction (CO2RR) possibly due to weak *CO adsorption. In this report, a hydroxypillar[5]arene‐extended porous polymer‐confined silver catalyst (PAF‐PA5‐Ag‐0.8) for electrochemical CO2RR which can selectively produce ethanol with a maximum Faradaic efficiency of 55% at 11 mA cm−1 is described. The study reveals that the hydroxypillar[5]arene‐confined Ag clusters are the active sites for ethanol formation. Moreover, temperature‐programmed desorption measurements demonstrate an enhanced adsorption strength of CO* on PAF‐PA5‐Ag‐0.8 compared with that on commercial Ag nanoparticles, which is favored by the C‐C coupling to form ethanol. The density functional theory study indicates that the confined Ag clusters in PAF‐PA5‐Ag‐0.8 contribute to high C2 selectivity in CO2RR through facilitating *COOH formation, stabilizing *CO intermediates, and inhibiting hydrogen evolution. This work provides a new design strategy by modulating *CO adsorption strength on non‐copper electrocatalysts in converting CO2 into “green” C2 products.
A supramolecular approach is employed to construct Ag cluster catalysts for electrochemical CO2 reduction reaction. The hydroxypillar[5]arene‐confined Ag clusters in a porous aromatic polymer can electrochemically reduce CO2 to ethanol selectively owing to the synergetic effect between hydroxypillar[5]arene's OH groups and the Ag species to facilitate *COOH formation, stabilize *CO intermediates, and inhibit hydrogen evolution.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202300697</identifier><language>eng</language><subject>Ag clusters ; density functional theory ; electrochemical CO 2 reduction ; ethanol ; hydroxypillararene‐extended porous polymers</subject><ispartof>Advanced functional materials, 2023-07, Vol.33 (29), p.n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-9717-4351</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202300697$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202300697$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Qin, Junjie</creatorcontrib><creatorcontrib>Wang, Tao</creatorcontrib><creatorcontrib>Zhai, Mingming</creatorcontrib><creatorcontrib>Wu, Chengyu</creatorcontrib><creatorcontrib>Liu, Yahu A.</creatorcontrib><creatorcontrib>Yang, Bo</creatorcontrib><creatorcontrib>Yang, Hui</creatorcontrib><creatorcontrib>Wen, Ke</creatorcontrib><creatorcontrib>Hu, Weibo</creatorcontrib><title>Hydroxypillar[5]arene‐Confined Silver Nanocatalyst for Selective Electrochemical Reduction of CO2 to Ethanol</title><title>Advanced functional materials</title><description>CO is usually the dominant product on silver‐based catalysts in electrochemical CO2 reduction reaction (CO2RR) possibly due to weak *CO adsorption. In this report, a hydroxypillar[5]arene‐extended porous polymer‐confined silver catalyst (PAF‐PA5‐Ag‐0.8) for electrochemical CO2RR which can selectively produce ethanol with a maximum Faradaic efficiency of 55% at 11 mA cm−1 is described. The study reveals that the hydroxypillar[5]arene‐confined Ag clusters are the active sites for ethanol formation. Moreover, temperature‐programmed desorption measurements demonstrate an enhanced adsorption strength of CO* on PAF‐PA5‐Ag‐0.8 compared with that on commercial Ag nanoparticles, which is favored by the C‐C coupling to form ethanol. The density functional theory study indicates that the confined Ag clusters in PAF‐PA5‐Ag‐0.8 contribute to high C2 selectivity in CO2RR through facilitating *COOH formation, stabilizing *CO intermediates, and inhibiting hydrogen evolution. This work provides a new design strategy by modulating *CO adsorption strength on non‐copper electrocatalysts in converting CO2 into “green” C2 products.
A supramolecular approach is employed to construct Ag cluster catalysts for electrochemical CO2 reduction reaction. The hydroxypillar[5]arene‐confined Ag clusters in a porous aromatic polymer can electrochemically reduce CO2 to ethanol selectively owing to the synergetic effect between hydroxypillar[5]arene's OH groups and the Ag species to facilitate *COOH formation, stabilize *CO intermediates, and inhibit hydrogen evolution.</description><subject>Ag clusters</subject><subject>density functional theory</subject><subject>electrochemical CO 2 reduction</subject><subject>ethanol</subject><subject>hydroxypillararene‐extended porous polymers</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNo9kN1KwzAYhoMoOKenHucGOr8ka9Iejro5YTpwCoJISdsvLJI1I63TnnkJXqNX4obSo_cP3oOHkEsGIwbAr3RlNiMOXADIVB2RAZNMRgJ4ctx79nxKzprmDYApJcYDUs-7KvjPbmud0-ElftUBa_z5-s58bWyNFV1Zt8NA73XtS91q1zUtNT7QFTosW7tDOj2Y4Ms1bmypHX3A6n2_-Jp6Q7Mlp62n03a9P3Dn5MRo1-DFvw7J02z6mM2jxfLmNpssooZDrCKJRlRS6KQwQuBYCJ4kRcpZoWOjCpUKCbHU3EgoFe5rwbAaC4M6LmNQPBFDkv79fliHXb4NdqNDlzPID6jyA6q8R5VPrmd3fRK_EDxidQ</recordid><startdate>20230718</startdate><enddate>20230718</enddate><creator>Qin, Junjie</creator><creator>Wang, Tao</creator><creator>Zhai, Mingming</creator><creator>Wu, Chengyu</creator><creator>Liu, Yahu A.</creator><creator>Yang, Bo</creator><creator>Yang, Hui</creator><creator>Wen, Ke</creator><creator>Hu, Weibo</creator><scope/><orcidid>https://orcid.org/0000-0002-9717-4351</orcidid></search><sort><creationdate>20230718</creationdate><title>Hydroxypillar[5]arene‐Confined Silver Nanocatalyst for Selective Electrochemical Reduction of CO2 to Ethanol</title><author>Qin, Junjie ; Wang, Tao ; Zhai, Mingming ; Wu, Chengyu ; Liu, Yahu A. ; Yang, Bo ; Yang, Hui ; Wen, Ke ; Hu, Weibo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-s2057-6ef3d63a8bf33e433288b921ba5f7b7936056a2f60c7e21b31ed43fea5c507283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Ag clusters</topic><topic>density functional theory</topic><topic>electrochemical CO 2 reduction</topic><topic>ethanol</topic><topic>hydroxypillararene‐extended porous polymers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qin, Junjie</creatorcontrib><creatorcontrib>Wang, Tao</creatorcontrib><creatorcontrib>Zhai, Mingming</creatorcontrib><creatorcontrib>Wu, Chengyu</creatorcontrib><creatorcontrib>Liu, Yahu A.</creatorcontrib><creatorcontrib>Yang, Bo</creatorcontrib><creatorcontrib>Yang, Hui</creatorcontrib><creatorcontrib>Wen, Ke</creatorcontrib><creatorcontrib>Hu, Weibo</creatorcontrib><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qin, Junjie</au><au>Wang, Tao</au><au>Zhai, Mingming</au><au>Wu, Chengyu</au><au>Liu, Yahu A.</au><au>Yang, Bo</au><au>Yang, Hui</au><au>Wen, Ke</au><au>Hu, Weibo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydroxypillar[5]arene‐Confined Silver Nanocatalyst for Selective Electrochemical Reduction of CO2 to Ethanol</atitle><jtitle>Advanced functional materials</jtitle><date>2023-07-18</date><risdate>2023</risdate><volume>33</volume><issue>29</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>CO is usually the dominant product on silver‐based catalysts in electrochemical CO2 reduction reaction (CO2RR) possibly due to weak *CO adsorption. In this report, a hydroxypillar[5]arene‐extended porous polymer‐confined silver catalyst (PAF‐PA5‐Ag‐0.8) for electrochemical CO2RR which can selectively produce ethanol with a maximum Faradaic efficiency of 55% at 11 mA cm−1 is described. The study reveals that the hydroxypillar[5]arene‐confined Ag clusters are the active sites for ethanol formation. Moreover, temperature‐programmed desorption measurements demonstrate an enhanced adsorption strength of CO* on PAF‐PA5‐Ag‐0.8 compared with that on commercial Ag nanoparticles, which is favored by the C‐C coupling to form ethanol. The density functional theory study indicates that the confined Ag clusters in PAF‐PA5‐Ag‐0.8 contribute to high C2 selectivity in CO2RR through facilitating *COOH formation, stabilizing *CO intermediates, and inhibiting hydrogen evolution. This work provides a new design strategy by modulating *CO adsorption strength on non‐copper electrocatalysts in converting CO2 into “green” C2 products.
A supramolecular approach is employed to construct Ag cluster catalysts for electrochemical CO2 reduction reaction. The hydroxypillar[5]arene‐confined Ag clusters in a porous aromatic polymer can electrochemically reduce CO2 to ethanol selectively owing to the synergetic effect between hydroxypillar[5]arene's OH groups and the Ag species to facilitate *COOH formation, stabilize *CO intermediates, and inhibit hydrogen evolution.</abstract><doi>10.1002/adfm.202300697</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-9717-4351</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2023-07, Vol.33 (29), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_wiley_primary_10_1002_adfm_202300697_ADFM202300697 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Ag clusters density functional theory electrochemical CO 2 reduction ethanol hydroxypillararene‐extended porous polymers |
title | Hydroxypillar[5]arene‐Confined Silver Nanocatalyst for Selective Electrochemical Reduction of CO2 to Ethanol |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T00%3A34%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydroxypillar%5B5%5Darene%E2%80%90Confined%20Silver%20Nanocatalyst%20for%20Selective%20Electrochemical%20Reduction%20of%20CO2%20to%20Ethanol&rft.jtitle=Advanced%20functional%20materials&rft.au=Qin,%20Junjie&rft.date=2023-07-18&rft.volume=33&rft.issue=29&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202300697&rft_dat=%3Cwiley%3EADFM202300697%3C/wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |