Circumventing Dedicated Electrolytes in Light‐Emitting Electrochemical Cells

Light‐emitting electrochemical cells (LECs) are devices that utilize efficient ion redistribution to produce high‐efficiency electroluminescence in a simple device architecture. Prototypical polymer LECs utilize three components in the active layer: a luminescent conducting polymer, a salt, and an e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2020-08, Vol.30 (33), p.n/a, Article 1906715
Hauptverfasser: Bowler, Melanie H., Mishra, Aditya, Adams, Austen C., Blangy, Corinne L.‐D., Slinker, Jason D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 33
container_start_page
container_title Advanced functional materials
container_volume 30
creator Bowler, Melanie H.
Mishra, Aditya
Adams, Austen C.
Blangy, Corinne L.‐D.
Slinker, Jason D.
description Light‐emitting electrochemical cells (LECs) are devices that utilize efficient ion redistribution to produce high‐efficiency electroluminescence in a simple device architecture. Prototypical polymer LECs utilize three components in the active layer: a luminescent conducting polymer, a salt, and an electrolyte. Similarly, many small‐molecule LECs also utilize an electrolyte to disperse salts. In these systems, the electrolyte is incorporated to efficiently conduct ions and to maintain phase compatibility between all components. However, certain LEC approaches and materials systems enable device operation without a dedicated electrolyte. This review describes the general methods and materials used to circumvent the use of a dedicated electrolyte in LECs. The techniques of synthetically coupling electrolytes, incorporating ionic liquids, and introducing inorganic salts are presented in view of research efforts to date. The use of these techniques in emerging classes of light‐emitting electrochemical cells is also discussed. These approaches have yielded some of the most efficient, long‐lasting, and commercially applicable LECs to date. Maintaining ionic conductivity in the active films of light‐emitting electrochemical cells is essential to their operation, and many devices use dedicated electrolytes such as poly(ethylene oxide). This review describes the approaches to avoid the use of dedicated electrolyte materials in light‐emitting electrochemical cells through clever combinations of electroluminescent materials and associated salts.
doi_str_mv 10.1002/adfm.201906715
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_wiley_primary_10_1002_adfm_201906715_ADFM201906715</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2432872446</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4225-8738ac2db7179373820a3cc15dee7f31b6c59716a12b5692367192047780693a3</originalsourceid><addsrcrecordid>eNqNkLtOwzAUhiMEEqWwMkdiRCnn2ImdjFVoAanAAhJb5DhO6yqXEjugbjwCz8iT4NKqjDD5WPq-c_k97xxhhADkShRlPSKACTCO0YE3QIYsoEDiw32NL8feiTFLAOSchgPvIdWd7Os31VjdzP1rVWgprCr8SaWk7dpqbZXxdePP9Hxhvz4-J7W2P-gOkAtVO6XyU1VV5tQ7KkVl1NnuHXrP08lTehvMHm_u0vEskCEhURBzGgtJipwjT6j7EBBUSowKpXhJMWcySjgygSSPWEKouyghEHIeA0uooEPvYtt31bWvvTI2W7Z917iRGQkpiTkJQ-ao0ZaSXWtMp8ps1eladOsMIdtklm0yy_aZOeFyK7yrvC2N1KqRai8BQIRAMOSuAnR0_H861VZY3TZp2zfWqclO1ZVa_7FWNr6e3v8u-Q1BnpB-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2432872446</pqid></control><display><type>article</type><title>Circumventing Dedicated Electrolytes in Light‐Emitting Electrochemical Cells</title><source>Access via Wiley Online Library</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Bowler, Melanie H. ; Mishra, Aditya ; Adams, Austen C. ; Blangy, Corinne L.‐D. ; Slinker, Jason D.</creator><creatorcontrib>Bowler, Melanie H. ; Mishra, Aditya ; Adams, Austen C. ; Blangy, Corinne L.‐D. ; Slinker, Jason D.</creatorcontrib><description>Light‐emitting electrochemical cells (LECs) are devices that utilize efficient ion redistribution to produce high‐efficiency electroluminescence in a simple device architecture. Prototypical polymer LECs utilize three components in the active layer: a luminescent conducting polymer, a salt, and an electrolyte. Similarly, many small‐molecule LECs also utilize an electrolyte to disperse salts. In these systems, the electrolyte is incorporated to efficiently conduct ions and to maintain phase compatibility between all components. However, certain LEC approaches and materials systems enable device operation without a dedicated electrolyte. This review describes the general methods and materials used to circumvent the use of a dedicated electrolyte in LECs. The techniques of synthetically coupling electrolytes, incorporating ionic liquids, and introducing inorganic salts are presented in view of research efforts to date. The use of these techniques in emerging classes of light‐emitting electrochemical cells is also discussed. These approaches have yielded some of the most efficient, long‐lasting, and commercially applicable LECs to date. Maintaining ionic conductivity in the active films of light‐emitting electrochemical cells is essential to their operation, and many devices use dedicated electrolytes such as poly(ethylene oxide). This review describes the approaches to avoid the use of dedicated electrolyte materials in light‐emitting electrochemical cells through clever combinations of electroluminescent materials and associated salts.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201906715</identifier><language>eng</language><publisher>WEINHEIM: Wiley</publisher><subject>Chemistry ; Chemistry, Multidisciplinary ; Chemistry, Physical ; Computer architecture ; Conducting polymers ; double‐layer formation ; Electrochemical cells ; Electroluminescence ; Electrolytes ; Electrolytic cells ; Inorganic salts ; ion conduction ; Ionic liquids ; LECs ; Materials Science ; Materials Science, Multidisciplinary ; Nanoscience &amp; Nanotechnology ; OLEDs ; Physical Sciences ; Physics ; Physics, Applied ; Physics, Condensed Matter ; Science &amp; Technology ; Science &amp; Technology - Other Topics ; Technology</subject><ispartof>Advanced functional materials, 2020-08, Vol.30 (33), p.n/a, Article 1906715</ispartof><rights>2020 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2020 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>24</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000510214700001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c4225-8738ac2db7179373820a3cc15dee7f31b6c59716a12b5692367192047780693a3</citedby><cites>FETCH-LOGICAL-c4225-8738ac2db7179373820a3cc15dee7f31b6c59716a12b5692367192047780693a3</cites><orcidid>0000-0001-7338-586X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.201906715$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.201906715$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,782,786,1419,27931,27932,28255,45581,45582</link.rule.ids></links><search><creatorcontrib>Bowler, Melanie H.</creatorcontrib><creatorcontrib>Mishra, Aditya</creatorcontrib><creatorcontrib>Adams, Austen C.</creatorcontrib><creatorcontrib>Blangy, Corinne L.‐D.</creatorcontrib><creatorcontrib>Slinker, Jason D.</creatorcontrib><title>Circumventing Dedicated Electrolytes in Light‐Emitting Electrochemical Cells</title><title>Advanced functional materials</title><addtitle>ADV FUNCT MATER</addtitle><description>Light‐emitting electrochemical cells (LECs) are devices that utilize efficient ion redistribution to produce high‐efficiency electroluminescence in a simple device architecture. Prototypical polymer LECs utilize three components in the active layer: a luminescent conducting polymer, a salt, and an electrolyte. Similarly, many small‐molecule LECs also utilize an electrolyte to disperse salts. In these systems, the electrolyte is incorporated to efficiently conduct ions and to maintain phase compatibility between all components. However, certain LEC approaches and materials systems enable device operation without a dedicated electrolyte. This review describes the general methods and materials used to circumvent the use of a dedicated electrolyte in LECs. The techniques of synthetically coupling electrolytes, incorporating ionic liquids, and introducing inorganic salts are presented in view of research efforts to date. The use of these techniques in emerging classes of light‐emitting electrochemical cells is also discussed. These approaches have yielded some of the most efficient, long‐lasting, and commercially applicable LECs to date. Maintaining ionic conductivity in the active films of light‐emitting electrochemical cells is essential to their operation, and many devices use dedicated electrolytes such as poly(ethylene oxide). This review describes the approaches to avoid the use of dedicated electrolyte materials in light‐emitting electrochemical cells through clever combinations of electroluminescent materials and associated salts.</description><subject>Chemistry</subject><subject>Chemistry, Multidisciplinary</subject><subject>Chemistry, Physical</subject><subject>Computer architecture</subject><subject>Conducting polymers</subject><subject>double‐layer formation</subject><subject>Electrochemical cells</subject><subject>Electroluminescence</subject><subject>Electrolytes</subject><subject>Electrolytic cells</subject><subject>Inorganic salts</subject><subject>ion conduction</subject><subject>Ionic liquids</subject><subject>LECs</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>Nanoscience &amp; Nanotechnology</subject><subject>OLEDs</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Applied</subject><subject>Physics, Condensed Matter</subject><subject>Science &amp; Technology</subject><subject>Science &amp; Technology - Other Topics</subject><subject>Technology</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkLtOwzAUhiMEEqWwMkdiRCnn2ImdjFVoAanAAhJb5DhO6yqXEjugbjwCz8iT4NKqjDD5WPq-c_k97xxhhADkShRlPSKACTCO0YE3QIYsoEDiw32NL8feiTFLAOSchgPvIdWd7Os31VjdzP1rVWgprCr8SaWk7dpqbZXxdePP9Hxhvz4-J7W2P-gOkAtVO6XyU1VV5tQ7KkVl1NnuHXrP08lTehvMHm_u0vEskCEhURBzGgtJipwjT6j7EBBUSowKpXhJMWcySjgygSSPWEKouyghEHIeA0uooEPvYtt31bWvvTI2W7Z917iRGQkpiTkJQ-ao0ZaSXWtMp8ps1eladOsMIdtklm0yy_aZOeFyK7yrvC2N1KqRai8BQIRAMOSuAnR0_H861VZY3TZp2zfWqclO1ZVa_7FWNr6e3v8u-Q1BnpB-</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Bowler, Melanie H.</creator><creator>Mishra, Aditya</creator><creator>Adams, Austen C.</creator><creator>Blangy, Corinne L.‐D.</creator><creator>Slinker, Jason D.</creator><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7338-586X</orcidid></search><sort><creationdate>20200801</creationdate><title>Circumventing Dedicated Electrolytes in Light‐Emitting Electrochemical Cells</title><author>Bowler, Melanie H. ; Mishra, Aditya ; Adams, Austen C. ; Blangy, Corinne L.‐D. ; Slinker, Jason D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4225-8738ac2db7179373820a3cc15dee7f31b6c59716a12b5692367192047780693a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chemistry</topic><topic>Chemistry, Multidisciplinary</topic><topic>Chemistry, Physical</topic><topic>Computer architecture</topic><topic>Conducting polymers</topic><topic>double‐layer formation</topic><topic>Electrochemical cells</topic><topic>Electroluminescence</topic><topic>Electrolytes</topic><topic>Electrolytic cells</topic><topic>Inorganic salts</topic><topic>ion conduction</topic><topic>Ionic liquids</topic><topic>LECs</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>Nanoscience &amp; Nanotechnology</topic><topic>OLEDs</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Applied</topic><topic>Physics, Condensed Matter</topic><topic>Science &amp; Technology</topic><topic>Science &amp; Technology - Other Topics</topic><topic>Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bowler, Melanie H.</creatorcontrib><creatorcontrib>Mishra, Aditya</creatorcontrib><creatorcontrib>Adams, Austen C.</creatorcontrib><creatorcontrib>Blangy, Corinne L.‐D.</creatorcontrib><creatorcontrib>Slinker, Jason D.</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bowler, Melanie H.</au><au>Mishra, Aditya</au><au>Adams, Austen C.</au><au>Blangy, Corinne L.‐D.</au><au>Slinker, Jason D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Circumventing Dedicated Electrolytes in Light‐Emitting Electrochemical Cells</atitle><jtitle>Advanced functional materials</jtitle><stitle>ADV FUNCT MATER</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>30</volume><issue>33</issue><epage>n/a</epage><artnum>1906715</artnum><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Light‐emitting electrochemical cells (LECs) are devices that utilize efficient ion redistribution to produce high‐efficiency electroluminescence in a simple device architecture. Prototypical polymer LECs utilize three components in the active layer: a luminescent conducting polymer, a salt, and an electrolyte. Similarly, many small‐molecule LECs also utilize an electrolyte to disperse salts. In these systems, the electrolyte is incorporated to efficiently conduct ions and to maintain phase compatibility between all components. However, certain LEC approaches and materials systems enable device operation without a dedicated electrolyte. This review describes the general methods and materials used to circumvent the use of a dedicated electrolyte in LECs. The techniques of synthetically coupling electrolytes, incorporating ionic liquids, and introducing inorganic salts are presented in view of research efforts to date. The use of these techniques in emerging classes of light‐emitting electrochemical cells is also discussed. These approaches have yielded some of the most efficient, long‐lasting, and commercially applicable LECs to date. Maintaining ionic conductivity in the active films of light‐emitting electrochemical cells is essential to their operation, and many devices use dedicated electrolytes such as poly(ethylene oxide). This review describes the approaches to avoid the use of dedicated electrolyte materials in light‐emitting electrochemical cells through clever combinations of electroluminescent materials and associated salts.</abstract><cop>WEINHEIM</cop><pub>Wiley</pub><doi>10.1002/adfm.201906715</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-7338-586X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2020-08, Vol.30 (33), p.n/a, Article 1906715
issn 1616-301X
1616-3028
language eng
recordid cdi_wiley_primary_10_1002_adfm_201906715_ADFM201906715
source Access via Wiley Online Library; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Chemistry
Chemistry, Multidisciplinary
Chemistry, Physical
Computer architecture
Conducting polymers
double‐layer formation
Electrochemical cells
Electroluminescence
Electrolytes
Electrolytic cells
Inorganic salts
ion conduction
Ionic liquids
LECs
Materials Science
Materials Science, Multidisciplinary
Nanoscience & Nanotechnology
OLEDs
Physical Sciences
Physics
Physics, Applied
Physics, Condensed Matter
Science & Technology
Science & Technology - Other Topics
Technology
title Circumventing Dedicated Electrolytes in Light‐Emitting Electrochemical Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T21%3A18%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Circumventing%20Dedicated%20Electrolytes%20in%20Light%E2%80%90Emitting%20Electrochemical%20Cells&rft.jtitle=Advanced%20functional%20materials&rft.au=Bowler,%20Melanie%20H.&rft.date=2020-08-01&rft.volume=30&rft.issue=33&rft.epage=n/a&rft.artnum=1906715&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201906715&rft_dat=%3Cproquest_wiley%3E2432872446%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2432872446&rft_id=info:pmid/&rfr_iscdi=true