Metal/Metal-Oxide Interfaces: How Metal Contacts Affect the Work Function and Band Structure of MoO3

When transition metal oxides are used in practical applications, such as organic electronics or heterogeneous catalysis, they often must be in contact with a metal. Metal contacts can affect an oxide's chemical and electronic properties within the first few nanometers of the contact, resulting...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2013-01, Vol.23 (2), p.215-226
Hauptverfasser: Greiner, Mark T., Chai, Lily, Helander, Michael G., Tang, Wing-Man, Lu, Zheng-Hong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 226
container_issue 2
container_start_page 215
container_title Advanced functional materials
container_volume 23
creator Greiner, Mark T.
Chai, Lily
Helander, Michael G.
Tang, Wing-Man
Lu, Zheng-Hong
description When transition metal oxides are used in practical applications, such as organic electronics or heterogeneous catalysis, they often must be in contact with a metal. Metal contacts can affect an oxide's chemical and electronic properties within the first few nanometers of the contact, resulting in changes to an oxide's chemical reactivity, conductivity, and energy‐level alignment properties. These effects can alter an oxide's ability to perform its intended function. Thus, the choice of contacting metal becomes an important design consideration when tailoring the properties of transition‐metal oxide thin films or nanoparticles. Here, metal/metal‐oxide interfaces involving a widely used oxide in organic electronics, MoO3, are examined. It is demonstrated that metal contacts tend to reduce the Mo6+ cation to lower oxidation states and, consequently, alter MoO3’s valence electronic structure and work function when the oxide layer is very thin (less than 10 nm). MoO3 becomes semimetallic and has a lower work function near metal contacts. The observed behavior is attributed to two causes: 1) charge transfer from the metal Fermi level into MoO3’s low‐lying conduction band and 2) an oxidation‐reduction reaction between the metal and MoO3 that results in oxidation of the metal and reduction of MoO3. These results illustrate how interfaces are important to an oxide's ability to provide energy‐level alignment. Metal/metal‐oxide interfaces are important for many electronic devices. It is shown that chemical and electronic interfacial interactions between metals and oxides result in nanometer‐scale changes to the work function and electronic band structure for MoO3.
doi_str_mv 10.1002/adfm.201200993
format Article
fullrecord <record><control><sourceid>wiley_istex</sourceid><recordid>TN_cdi_wiley_primary_10_1002_adfm_201200993_ADFM201200993</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ADFM201200993</sourcerecordid><originalsourceid>FETCH-LOGICAL-i3093-7fbaebade547ba59b6739a8aee87fff02ac97225fa2434146ba2fb06facb9c8f3</originalsourceid><addsrcrecordid>eNo9kEtPwzAQhC0EEqVw5ew_kOJHEsfcSqEPqaEHCkVcrLVji9A2QY6rtv-ePlAusztafavRIHRPSY8Swh6gcOseI5QRIiW_QB2a0jTihGWX7U4_r9FN0_wQQoXgcQcVuQ2wejhpNNuVhcWTKljvwNjmEY_rLT7d8KCuApjQ4L5z1gQcvi1e1H6Jh5vKhLKuMFQFfjrKW_AbEzbe4trhvJ7xW3TlYNXYu__ZRe_Dl_lgHE1no8mgP41KTiSPhNNgNRQ2iYWGROpUcAkZWJsJ5xxhYKRgLHHAYh7TONXAnCbpIauWJnO8i-T577Zc2b369eUa_F5Roo4FqWNBqi1I9Z-HeesObHRmyybYXcuCX6pDDJGoxetIzbOcZ4J_qC_-B3zUbHQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Metal/Metal-Oxide Interfaces: How Metal Contacts Affect the Work Function and Band Structure of MoO3</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Greiner, Mark T. ; Chai, Lily ; Helander, Michael G. ; Tang, Wing-Man ; Lu, Zheng-Hong</creator><creatorcontrib>Greiner, Mark T. ; Chai, Lily ; Helander, Michael G. ; Tang, Wing-Man ; Lu, Zheng-Hong</creatorcontrib><description>When transition metal oxides are used in practical applications, such as organic electronics or heterogeneous catalysis, they often must be in contact with a metal. Metal contacts can affect an oxide's chemical and electronic properties within the first few nanometers of the contact, resulting in changes to an oxide's chemical reactivity, conductivity, and energy‐level alignment properties. These effects can alter an oxide's ability to perform its intended function. Thus, the choice of contacting metal becomes an important design consideration when tailoring the properties of transition‐metal oxide thin films or nanoparticles. Here, metal/metal‐oxide interfaces involving a widely used oxide in organic electronics, MoO3, are examined. It is demonstrated that metal contacts tend to reduce the Mo6+ cation to lower oxidation states and, consequently, alter MoO3’s valence electronic structure and work function when the oxide layer is very thin (less than 10 nm). MoO3 becomes semimetallic and has a lower work function near metal contacts. The observed behavior is attributed to two causes: 1) charge transfer from the metal Fermi level into MoO3’s low‐lying conduction band and 2) an oxidation‐reduction reaction between the metal and MoO3 that results in oxidation of the metal and reduction of MoO3. These results illustrate how interfaces are important to an oxide's ability to provide energy‐level alignment. Metal/metal‐oxide interfaces are important for many electronic devices. It is shown that chemical and electronic interfacial interactions between metals and oxides result in nanometer‐scale changes to the work function and electronic band structure for MoO3.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201200993</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>metal oxide interfaces ; oxidation states ; work functions</subject><ispartof>Advanced functional materials, 2013-01, Vol.23 (2), p.215-226</ispartof><rights>Copyright © 2013 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.201200993$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.201200993$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Greiner, Mark T.</creatorcontrib><creatorcontrib>Chai, Lily</creatorcontrib><creatorcontrib>Helander, Michael G.</creatorcontrib><creatorcontrib>Tang, Wing-Man</creatorcontrib><creatorcontrib>Lu, Zheng-Hong</creatorcontrib><title>Metal/Metal-Oxide Interfaces: How Metal Contacts Affect the Work Function and Band Structure of MoO3</title><title>Advanced functional materials</title><addtitle>Adv. Funct. Mater</addtitle><description>When transition metal oxides are used in practical applications, such as organic electronics or heterogeneous catalysis, they often must be in contact with a metal. Metal contacts can affect an oxide's chemical and electronic properties within the first few nanometers of the contact, resulting in changes to an oxide's chemical reactivity, conductivity, and energy‐level alignment properties. These effects can alter an oxide's ability to perform its intended function. Thus, the choice of contacting metal becomes an important design consideration when tailoring the properties of transition‐metal oxide thin films or nanoparticles. Here, metal/metal‐oxide interfaces involving a widely used oxide in organic electronics, MoO3, are examined. It is demonstrated that metal contacts tend to reduce the Mo6+ cation to lower oxidation states and, consequently, alter MoO3’s valence electronic structure and work function when the oxide layer is very thin (less than 10 nm). MoO3 becomes semimetallic and has a lower work function near metal contacts. The observed behavior is attributed to two causes: 1) charge transfer from the metal Fermi level into MoO3’s low‐lying conduction band and 2) an oxidation‐reduction reaction between the metal and MoO3 that results in oxidation of the metal and reduction of MoO3. These results illustrate how interfaces are important to an oxide's ability to provide energy‐level alignment. Metal/metal‐oxide interfaces are important for many electronic devices. It is shown that chemical and electronic interfacial interactions between metals and oxides result in nanometer‐scale changes to the work function and electronic band structure for MoO3.</description><subject>metal oxide interfaces</subject><subject>oxidation states</subject><subject>work functions</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNo9kEtPwzAQhC0EEqVw5ew_kOJHEsfcSqEPqaEHCkVcrLVji9A2QY6rtv-ePlAusztafavRIHRPSY8Swh6gcOseI5QRIiW_QB2a0jTihGWX7U4_r9FN0_wQQoXgcQcVuQ2wejhpNNuVhcWTKljvwNjmEY_rLT7d8KCuApjQ4L5z1gQcvi1e1H6Jh5vKhLKuMFQFfjrKW_AbEzbe4trhvJ7xW3TlYNXYu__ZRe_Dl_lgHE1no8mgP41KTiSPhNNgNRQ2iYWGROpUcAkZWJsJ5xxhYKRgLHHAYh7TONXAnCbpIauWJnO8i-T577Zc2b369eUa_F5Roo4FqWNBqi1I9Z-HeesObHRmyybYXcuCX6pDDJGoxetIzbOcZ4J_qC_-B3zUbHQ</recordid><startdate>20130114</startdate><enddate>20130114</enddate><creator>Greiner, Mark T.</creator><creator>Chai, Lily</creator><creator>Helander, Michael G.</creator><creator>Tang, Wing-Man</creator><creator>Lu, Zheng-Hong</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>BSCLL</scope></search><sort><creationdate>20130114</creationdate><title>Metal/Metal-Oxide Interfaces: How Metal Contacts Affect the Work Function and Band Structure of MoO3</title><author>Greiner, Mark T. ; Chai, Lily ; Helander, Michael G. ; Tang, Wing-Man ; Lu, Zheng-Hong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i3093-7fbaebade547ba59b6739a8aee87fff02ac97225fa2434146ba2fb06facb9c8f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>metal oxide interfaces</topic><topic>oxidation states</topic><topic>work functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Greiner, Mark T.</creatorcontrib><creatorcontrib>Chai, Lily</creatorcontrib><creatorcontrib>Helander, Michael G.</creatorcontrib><creatorcontrib>Tang, Wing-Man</creatorcontrib><creatorcontrib>Lu, Zheng-Hong</creatorcontrib><collection>Istex</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Greiner, Mark T.</au><au>Chai, Lily</au><au>Helander, Michael G.</au><au>Tang, Wing-Man</au><au>Lu, Zheng-Hong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metal/Metal-Oxide Interfaces: How Metal Contacts Affect the Work Function and Band Structure of MoO3</atitle><jtitle>Advanced functional materials</jtitle><addtitle>Adv. Funct. Mater</addtitle><date>2013-01-14</date><risdate>2013</risdate><volume>23</volume><issue>2</issue><spage>215</spage><epage>226</epage><pages>215-226</pages><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>When transition metal oxides are used in practical applications, such as organic electronics or heterogeneous catalysis, they often must be in contact with a metal. Metal contacts can affect an oxide's chemical and electronic properties within the first few nanometers of the contact, resulting in changes to an oxide's chemical reactivity, conductivity, and energy‐level alignment properties. These effects can alter an oxide's ability to perform its intended function. Thus, the choice of contacting metal becomes an important design consideration when tailoring the properties of transition‐metal oxide thin films or nanoparticles. Here, metal/metal‐oxide interfaces involving a widely used oxide in organic electronics, MoO3, are examined. It is demonstrated that metal contacts tend to reduce the Mo6+ cation to lower oxidation states and, consequently, alter MoO3’s valence electronic structure and work function when the oxide layer is very thin (less than 10 nm). MoO3 becomes semimetallic and has a lower work function near metal contacts. The observed behavior is attributed to two causes: 1) charge transfer from the metal Fermi level into MoO3’s low‐lying conduction band and 2) an oxidation‐reduction reaction between the metal and MoO3 that results in oxidation of the metal and reduction of MoO3. These results illustrate how interfaces are important to an oxide's ability to provide energy‐level alignment. Metal/metal‐oxide interfaces are important for many electronic devices. It is shown that chemical and electronic interfacial interactions between metals and oxides result in nanometer‐scale changes to the work function and electronic band structure for MoO3.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/adfm.201200993</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2013-01, Vol.23 (2), p.215-226
issn 1616-301X
1616-3028
language eng
recordid cdi_wiley_primary_10_1002_adfm_201200993_ADFM201200993
source Wiley Online Library Journals Frontfile Complete
subjects metal oxide interfaces
oxidation states
work functions
title Metal/Metal-Oxide Interfaces: How Metal Contacts Affect the Work Function and Band Structure of MoO3
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T04%3A09%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_istex&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metal/Metal-Oxide%20Interfaces:%20How%20Metal%20Contacts%20Affect%20the%20Work%20Function%20and%20Band%20Structure%20of%20MoO3&rft.jtitle=Advanced%20functional%20materials&rft.au=Greiner,%20Mark%20T.&rft.date=2013-01-14&rft.volume=23&rft.issue=2&rft.spage=215&rft.epage=226&rft.pages=215-226&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201200993&rft_dat=%3Cwiley_istex%3EADFM201200993%3C/wiley_istex%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true