Genome Data‐Based Explainable Recommender Systems

Genomics and personalized medicine have revolutionized healthcare by allowing doctors to customize treatments to individual genetic profiles. Genomic recommender systems utilize advanced machine learning techniques to analyze genomic data and provide personalized recommendations for various applicat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Chetana, V. Lakshmi, Seetha, Hari
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 168
container_issue
container_start_page 149
container_title
container_volume
creator Chetana, V. Lakshmi
Seetha, Hari
description Genomics and personalized medicine have revolutionized healthcare by allowing doctors to customize treatments to individual genetic profiles. Genomic recommender systems utilize advanced machine learning techniques to analyze genomic data and provide personalized recommendations for various applications in healthcare and genetics. These systems make recommendations and explain why specific treatments or medications are suggested, giving clarity to patients and building trust in the recommendation. Achieving transparency and interpretability in these systems is crucial to ensure that patients have confidence in their decisions based on their genetic data. This chapter comprehensively reviews existing research in this field, discusses its challenges, and highlights future directions for advancements in explainable genomic recommendation systems.
doi_str_mv 10.1002/9781394268832.ch7
format Book Chapter
fullrecord <record><control><sourceid>wiley</sourceid><recordid>TN_cdi_wiley_ebooks_10_1002_9781394268832_ch7_ch7</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10.1002/9781394268832.ch7</sourcerecordid><originalsourceid>FETCH-wiley_ebooks_10_1002_9781394268832_ch7_ch73</originalsourceid><addsrcrecordid>eNpjYJA0NNAzNDAw0rc0tzA0tjQxMrOwMDbSS84wZ2TgRRFjZuCCcQzMORh4i4szkwxMzcyNjS0tLTkZjN1T8_JzUxVcEksSHzVMcEosTk1RcK0oyEnMzEtMyklVCEpNzs_NTc1LSS1SCK4sLknNLeZhYE1LzClO5YXS3AyGbq4hzh665Zk5qZXxqUn5-dnF8YYG8SAXxqO4Jh7oQhA2JkcPAO9LRAo</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype></control><display><type>book_chapter</type><title>Genome Data‐Based Explainable Recommender Systems</title><source>O'Reilly Online Learning: Academic/Public Library Edition</source><creator>Chetana, V. Lakshmi ; Seetha, Hari</creator><contributor>Choudhary, Shilpa ; Sri Lakshmi, R ; Gowroju, Swathi ; Kumar, Sandeep ; Gulhane, Monali</contributor><creatorcontrib>Chetana, V. Lakshmi ; Seetha, Hari ; Choudhary, Shilpa ; Sri Lakshmi, R ; Gowroju, Swathi ; Kumar, Sandeep ; Gulhane, Monali</creatorcontrib><description>Genomics and personalized medicine have revolutionized healthcare by allowing doctors to customize treatments to individual genetic profiles. Genomic recommender systems utilize advanced machine learning techniques to analyze genomic data and provide personalized recommendations for various applications in healthcare and genetics. These systems make recommendations and explain why specific treatments or medications are suggested, giving clarity to patients and building trust in the recommendation. Achieving transparency and interpretability in these systems is crucial to ensure that patients have confidence in their decisions based on their genetic data. This chapter comprehensively reviews existing research in this field, discusses its challenges, and highlights future directions for advancements in explainable genomic recommendation systems.</description><identifier>ISBN: 1394268807</identifier><identifier>ISBN: 9781394268801</identifier><identifier>EISBN: 9781394268832</identifier><identifier>EISBN: 1394268831</identifier><identifier>DOI: 10.1002/9781394268832.ch7</identifier><language>eng</language><publisher>Hoboken, NJ, USA: John Wiley &amp; Sons, Inc</publisher><subject>Clinical recommender systems ; explainability ; explainable genomics ; genomic data ; genomic recommender systems ; healthcare applications ; personalized medicine</subject><ispartof>Genomics at the Nexus of AI, Computer Vision, and Machine Learning, 2025, p.149-168</ispartof><rights>2024 Scrivener Publishing LLC</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,781,785,794,27929</link.rule.ids></links><search><contributor>Choudhary, Shilpa</contributor><contributor>Sri Lakshmi, R</contributor><contributor>Gowroju, Swathi</contributor><contributor>Kumar, Sandeep</contributor><contributor>Gulhane, Monali</contributor><creatorcontrib>Chetana, V. Lakshmi</creatorcontrib><creatorcontrib>Seetha, Hari</creatorcontrib><title>Genome Data‐Based Explainable Recommender Systems</title><title>Genomics at the Nexus of AI, Computer Vision, and Machine Learning</title><description>Genomics and personalized medicine have revolutionized healthcare by allowing doctors to customize treatments to individual genetic profiles. Genomic recommender systems utilize advanced machine learning techniques to analyze genomic data and provide personalized recommendations for various applications in healthcare and genetics. These systems make recommendations and explain why specific treatments or medications are suggested, giving clarity to patients and building trust in the recommendation. Achieving transparency and interpretability in these systems is crucial to ensure that patients have confidence in their decisions based on their genetic data. This chapter comprehensively reviews existing research in this field, discusses its challenges, and highlights future directions for advancements in explainable genomic recommendation systems.</description><subject>Clinical recommender systems</subject><subject>explainability</subject><subject>explainable genomics</subject><subject>genomic data</subject><subject>genomic recommender systems</subject><subject>healthcare applications</subject><subject>personalized medicine</subject><isbn>1394268807</isbn><isbn>9781394268801</isbn><isbn>9781394268832</isbn><isbn>1394268831</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2025</creationdate><recordtype>book_chapter</recordtype><sourceid/><recordid>eNpjYJA0NNAzNDAw0rc0tzA0tjQxMrOwMDbSS84wZ2TgRRFjZuCCcQzMORh4i4szkwxMzcyNjS0tLTkZjN1T8_JzUxVcEksSHzVMcEosTk1RcK0oyEnMzEtMyklVCEpNzs_NTc1LSS1SCK4sLknNLeZhYE1LzClO5YXS3AyGbq4hzh665Zk5qZXxqUn5-dnF8YYG8SAXxqO4Jh7oQhA2JkcPAO9LRAo</recordid><startdate>20250102</startdate><enddate>20250102</enddate><creator>Chetana, V. Lakshmi</creator><creator>Seetha, Hari</creator><general>John Wiley &amp; Sons, Inc</general><scope/></search><sort><creationdate>20250102</creationdate><title>Genome Data‐Based Explainable Recommender Systems</title><author>Chetana, V. Lakshmi ; Seetha, Hari</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-wiley_ebooks_10_1002_9781394268832_ch7_ch73</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Clinical recommender systems</topic><topic>explainability</topic><topic>explainable genomics</topic><topic>genomic data</topic><topic>genomic recommender systems</topic><topic>healthcare applications</topic><topic>personalized medicine</topic><toplevel>online_resources</toplevel><creatorcontrib>Chetana, V. Lakshmi</creatorcontrib><creatorcontrib>Seetha, Hari</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chetana, V. Lakshmi</au><au>Seetha, Hari</au><au>Choudhary, Shilpa</au><au>Sri Lakshmi, R</au><au>Gowroju, Swathi</au><au>Kumar, Sandeep</au><au>Gulhane, Monali</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Genome Data‐Based Explainable Recommender Systems</atitle><btitle>Genomics at the Nexus of AI, Computer Vision, and Machine Learning</btitle><date>2025-01-02</date><risdate>2025</risdate><spage>149</spage><epage>168</epage><pages>149-168</pages><isbn>1394268807</isbn><isbn>9781394268801</isbn><eisbn>9781394268832</eisbn><eisbn>1394268831</eisbn><abstract>Genomics and personalized medicine have revolutionized healthcare by allowing doctors to customize treatments to individual genetic profiles. Genomic recommender systems utilize advanced machine learning techniques to analyze genomic data and provide personalized recommendations for various applications in healthcare and genetics. These systems make recommendations and explain why specific treatments or medications are suggested, giving clarity to patients and building trust in the recommendation. Achieving transparency and interpretability in these systems is crucial to ensure that patients have confidence in their decisions based on their genetic data. This chapter comprehensively reviews existing research in this field, discusses its challenges, and highlights future directions for advancements in explainable genomic recommendation systems.</abstract><cop>Hoboken, NJ, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/9781394268832.ch7</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISBN: 1394268807
ispartof Genomics at the Nexus of AI, Computer Vision, and Machine Learning, 2025, p.149-168
issn
language eng
recordid cdi_wiley_ebooks_10_1002_9781394268832_ch7_ch7
source O'Reilly Online Learning: Academic/Public Library Edition
subjects Clinical recommender systems
explainability
explainable genomics
genomic data
genomic recommender systems
healthcare applications
personalized medicine
title Genome Data‐Based Explainable Recommender Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T14%3A01%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Genome%20Data%E2%80%90Based%20Explainable%20Recommender%20Systems&rft.btitle=Genomics%20at%20the%20Nexus%20of%20AI,%20Computer%20Vision,%20and%20Machine%20Learning&rft.au=Chetana,%20V.%20Lakshmi&rft.date=2025-01-02&rft.spage=149&rft.epage=168&rft.pages=149-168&rft.isbn=1394268807&rft.isbn_list=9781394268801&rft_id=info:doi/10.1002/9781394268832.ch7&rft_dat=%3Cwiley%3E10.1002/9781394268832.ch7%3C/wiley%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781394268832&rft.eisbn_list=1394268831&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true