History of AI and Its Promise in Healthcare

Artificial intelligence (AI) isn't magic, and nor is it going to spark a robot uprising or replace the doctor entirely. Mathematical terms like machine learning and deep learning are used as easy ways to explain statistical computer algorithms that use data to identify patterns and make accurat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 26
container_issue
container_start_page 1
container_title
container_volume
description Artificial intelligence (AI) isn't magic, and nor is it going to spark a robot uprising or replace the doctor entirely. Mathematical terms like machine learning and deep learning are used as easy ways to explain statistical computer algorithms that use data to identify patterns and make accurate predictions. There are different levels of AI systems, with plenty of different algorithms being capable of consuming and classifying data or using it to make predictions. Although medicine has been notoriously slow to adopt innovations—and digital innovations in particular—the massive applications of AI in medicine are gaining significant momentum. Given the emergence of large language models and generative AI, there's great excitement about the possibilities they represent in healthcare. Foundation models—the latest generation of AI models—are trained on massive, diverse datasets and can be applied to numerous downstream tasks.
doi_str_mv 10.1002/9781394240197.ch1
format Book Chapter
fullrecord <record><control><sourceid>wiley</sourceid><recordid>TN_cdi_wiley_ebooks_10_1002_9781394240197_ch1_ch1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10.1002/9781394240197.ch1</sourcerecordid><originalsourceid>FETCH-LOGICAL-b1181-244ad99f709a32a07ea40d7a99a27d89270dfc167e3e508deb55fc3ceed12a983</originalsourceid><addsrcrecordid>eNpVj0FLw0AUhFdEUGt_gLe9S-p7u0l337EUNYGCHvQcXnZfaDQ2kA1I_70tisXDMMwMDHxK3SIsEMDck_NoKTc5ILlF2OKZuv4r_PkpLO2lmqf0DgAW8LDRlboruzQN414PrV5VmndRV1PSL-Pw2SXR3U6Xwv20DTzKjbpouU8y__WZent8eF2X2eb5qVqvNlmD6DEzec6RqHVAbA2DE84hOiZi46In4yC2AZdOrBTgozRF0QYbRCIaJm9nCn9-v7pe9rU0w_CRaoT6iFv_w60PuEfZb2SbRvk</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype></control><display><type>book_chapter</type><title>History of AI and Its Promise in Healthcare</title><source>O'Reilly Online Learning: Academic/Public Library Edition</source><contributor>Razmi, Ronald M</contributor><creatorcontrib>Razmi, Ronald M</creatorcontrib><description>Artificial intelligence (AI) isn't magic, and nor is it going to spark a robot uprising or replace the doctor entirely. Mathematical terms like machine learning and deep learning are used as easy ways to explain statistical computer algorithms that use data to identify patterns and make accurate predictions. There are different levels of AI systems, with plenty of different algorithms being capable of consuming and classifying data or using it to make predictions. Although medicine has been notoriously slow to adopt innovations—and digital innovations in particular—the massive applications of AI in medicine are gaining significant momentum. Given the emergence of large language models and generative AI, there's great excitement about the possibilities they represent in healthcare. Foundation models—the latest generation of AI models—are trained on massive, diverse datasets and can be applied to numerous downstream tasks.</description><identifier>ISBN: 1394240163</identifier><identifier>ISBN: 9781394240166</identifier><identifier>EISBN: 1394240198</identifier><identifier>EISBN: 9781394240197</identifier><identifier>DOI: 10.1002/9781394240197.ch1</identifier><language>eng</language><publisher>Hoboken, NJ, USA: John Wiley &amp; Sons, Inc</publisher><subject>artificial intelligence ; classification system ; data sources ; deep learning ; foundation models ; healthcare ; machine learning</subject><ispartof>AI Doctor, 2024, p.1-26</ispartof><rights>2024 Ronald M. Razmi</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>779,780,784,793,27924</link.rule.ids></links><search><contributor>Razmi, Ronald M</contributor><title>History of AI and Its Promise in Healthcare</title><title>AI Doctor</title><description>Artificial intelligence (AI) isn't magic, and nor is it going to spark a robot uprising or replace the doctor entirely. Mathematical terms like machine learning and deep learning are used as easy ways to explain statistical computer algorithms that use data to identify patterns and make accurate predictions. There are different levels of AI systems, with plenty of different algorithms being capable of consuming and classifying data or using it to make predictions. Although medicine has been notoriously slow to adopt innovations—and digital innovations in particular—the massive applications of AI in medicine are gaining significant momentum. Given the emergence of large language models and generative AI, there's great excitement about the possibilities they represent in healthcare. Foundation models—the latest generation of AI models—are trained on massive, diverse datasets and can be applied to numerous downstream tasks.</description><subject>artificial intelligence</subject><subject>classification system</subject><subject>data sources</subject><subject>deep learning</subject><subject>foundation models</subject><subject>healthcare</subject><subject>machine learning</subject><isbn>1394240163</isbn><isbn>9781394240166</isbn><isbn>1394240198</isbn><isbn>9781394240197</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2024</creationdate><recordtype>book_chapter</recordtype><sourceid/><recordid>eNpVj0FLw0AUhFdEUGt_gLe9S-p7u0l337EUNYGCHvQcXnZfaDQ2kA1I_70tisXDMMwMDHxK3SIsEMDck_NoKTc5ILlF2OKZuv4r_PkpLO2lmqf0DgAW8LDRlboruzQN414PrV5VmndRV1PSL-Pw2SXR3U6Xwv20DTzKjbpouU8y__WZent8eF2X2eb5qVqvNlmD6DEzec6RqHVAbA2DE84hOiZi46In4yC2AZdOrBTgozRF0QYbRCIaJm9nCn9-v7pe9rU0w_CRaoT6iFv_w60PuEfZb2SbRvk</recordid><startdate>20240112</startdate><enddate>20240112</enddate><general>John Wiley &amp; Sons, Inc</general><scope/></search><sort><creationdate>20240112</creationdate><title>History of AI and Its Promise in Healthcare</title></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b1181-244ad99f709a32a07ea40d7a99a27d89270dfc167e3e508deb55fc3ceed12a983</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2024</creationdate><topic>artificial intelligence</topic><topic>classification system</topic><topic>data sources</topic><topic>deep learning</topic><topic>foundation models</topic><topic>healthcare</topic><topic>machine learning</topic><toplevel>online_resources</toplevel></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Razmi, Ronald M</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>History of AI and Its Promise in Healthcare</atitle><btitle>AI Doctor</btitle><date>2024-01-12</date><risdate>2024</risdate><spage>1</spage><epage>26</epage><pages>1-26</pages><isbn>1394240163</isbn><isbn>9781394240166</isbn><eisbn>1394240198</eisbn><eisbn>9781394240197</eisbn><abstract>Artificial intelligence (AI) isn't magic, and nor is it going to spark a robot uprising or replace the doctor entirely. Mathematical terms like machine learning and deep learning are used as easy ways to explain statistical computer algorithms that use data to identify patterns and make accurate predictions. There are different levels of AI systems, with plenty of different algorithms being capable of consuming and classifying data or using it to make predictions. Although medicine has been notoriously slow to adopt innovations—and digital innovations in particular—the massive applications of AI in medicine are gaining significant momentum. Given the emergence of large language models and generative AI, there's great excitement about the possibilities they represent in healthcare. Foundation models—the latest generation of AI models—are trained on massive, diverse datasets and can be applied to numerous downstream tasks.</abstract><cop>Hoboken, NJ, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/9781394240197.ch1</doi><tpages>25</tpages></addata></record>
fulltext fulltext
identifier ISBN: 1394240163
ispartof AI Doctor, 2024, p.1-26
issn
language eng
recordid cdi_wiley_ebooks_10_1002_9781394240197_ch1_ch1
source O'Reilly Online Learning: Academic/Public Library Edition
subjects artificial intelligence
classification system
data sources
deep learning
foundation models
healthcare
machine learning
title History of AI and Its Promise in Healthcare
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T11%3A08%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=History%20of%20AI%20and%20Its%20Promise%20in%20Healthcare&rft.btitle=AI%20Doctor&rft.au=Razmi,%20Ronald%20M&rft.date=2024-01-12&rft.spage=1&rft.epage=26&rft.pages=1-26&rft.isbn=1394240163&rft.isbn_list=9781394240166&rft_id=info:doi/10.1002/9781394240197.ch1&rft_dat=%3Cwiley%3E10.1002/9781394240197.ch1%3C/wiley%3E%3Curl%3E%3C/url%3E&rft.eisbn=1394240198&rft.eisbn_list=9781394240197&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true