History of AI and Its Promise in Healthcare
Artificial intelligence (AI) isn't magic, and nor is it going to spark a robot uprising or replace the doctor entirely. Mathematical terms like machine learning and deep learning are used as easy ways to explain statistical computer algorithms that use data to identify patterns and make accurat...
Gespeichert in:
Format: | Buchkapitel |
---|---|
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 26 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
description | Artificial intelligence (AI) isn't magic, and nor is it going to spark a robot uprising or replace the doctor entirely. Mathematical terms like machine learning and deep learning are used as easy ways to explain statistical computer algorithms that use data to identify patterns and make accurate predictions. There are different levels of AI systems, with plenty of different algorithms being capable of consuming and classifying data or using it to make predictions. Although medicine has been notoriously slow to adopt innovations—and digital innovations in particular—the massive applications of AI in medicine are gaining significant momentum. Given the emergence of large language models and generative AI, there's great excitement about the possibilities they represent in healthcare. Foundation models—the latest generation of AI models—are trained on massive, diverse datasets and can be applied to numerous downstream tasks. |
doi_str_mv | 10.1002/9781394240197.ch1 |
format | Book Chapter |
fullrecord | <record><control><sourceid>wiley</sourceid><recordid>TN_cdi_wiley_ebooks_10_1002_9781394240197_ch1_ch1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10.1002/9781394240197.ch1</sourcerecordid><originalsourceid>FETCH-LOGICAL-b1181-244ad99f709a32a07ea40d7a99a27d89270dfc167e3e508deb55fc3ceed12a983</originalsourceid><addsrcrecordid>eNpVj0FLw0AUhFdEUGt_gLe9S-p7u0l337EUNYGCHvQcXnZfaDQ2kA1I_70tisXDMMwMDHxK3SIsEMDck_NoKTc5ILlF2OKZuv4r_PkpLO2lmqf0DgAW8LDRlboruzQN414PrV5VmndRV1PSL-Pw2SXR3U6Xwv20DTzKjbpouU8y__WZent8eF2X2eb5qVqvNlmD6DEzec6RqHVAbA2DE84hOiZi46In4yC2AZdOrBTgozRF0QYbRCIaJm9nCn9-v7pe9rU0w_CRaoT6iFv_w60PuEfZb2SbRvk</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype></control><display><type>book_chapter</type><title>History of AI and Its Promise in Healthcare</title><source>O'Reilly Online Learning: Academic/Public Library Edition</source><contributor>Razmi, Ronald M</contributor><creatorcontrib>Razmi, Ronald M</creatorcontrib><description>Artificial intelligence (AI) isn't magic, and nor is it going to spark a robot uprising or replace the doctor entirely. Mathematical terms like machine learning and deep learning are used as easy ways to explain statistical computer algorithms that use data to identify patterns and make accurate predictions. There are different levels of AI systems, with plenty of different algorithms being capable of consuming and classifying data or using it to make predictions. Although medicine has been notoriously slow to adopt innovations—and digital innovations in particular—the massive applications of AI in medicine are gaining significant momentum. Given the emergence of large language models and generative AI, there's great excitement about the possibilities they represent in healthcare. Foundation models—the latest generation of AI models—are trained on massive, diverse datasets and can be applied to numerous downstream tasks.</description><identifier>ISBN: 1394240163</identifier><identifier>ISBN: 9781394240166</identifier><identifier>EISBN: 1394240198</identifier><identifier>EISBN: 9781394240197</identifier><identifier>DOI: 10.1002/9781394240197.ch1</identifier><language>eng</language><publisher>Hoboken, NJ, USA: John Wiley & Sons, Inc</publisher><subject>artificial intelligence ; classification system ; data sources ; deep learning ; foundation models ; healthcare ; machine learning</subject><ispartof>AI Doctor, 2024, p.1-26</ispartof><rights>2024 Ronald M. Razmi</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>779,780,784,793,27924</link.rule.ids></links><search><contributor>Razmi, Ronald M</contributor><title>History of AI and Its Promise in Healthcare</title><title>AI Doctor</title><description>Artificial intelligence (AI) isn't magic, and nor is it going to spark a robot uprising or replace the doctor entirely. Mathematical terms like machine learning and deep learning are used as easy ways to explain statistical computer algorithms that use data to identify patterns and make accurate predictions. There are different levels of AI systems, with plenty of different algorithms being capable of consuming and classifying data or using it to make predictions. Although medicine has been notoriously slow to adopt innovations—and digital innovations in particular—the massive applications of AI in medicine are gaining significant momentum. Given the emergence of large language models and generative AI, there's great excitement about the possibilities they represent in healthcare. Foundation models—the latest generation of AI models—are trained on massive, diverse datasets and can be applied to numerous downstream tasks.</description><subject>artificial intelligence</subject><subject>classification system</subject><subject>data sources</subject><subject>deep learning</subject><subject>foundation models</subject><subject>healthcare</subject><subject>machine learning</subject><isbn>1394240163</isbn><isbn>9781394240166</isbn><isbn>1394240198</isbn><isbn>9781394240197</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2024</creationdate><recordtype>book_chapter</recordtype><sourceid/><recordid>eNpVj0FLw0AUhFdEUGt_gLe9S-p7u0l337EUNYGCHvQcXnZfaDQ2kA1I_70tisXDMMwMDHxK3SIsEMDck_NoKTc5ILlF2OKZuv4r_PkpLO2lmqf0DgAW8LDRlboruzQN414PrV5VmndRV1PSL-Pw2SXR3U6Xwv20DTzKjbpouU8y__WZent8eF2X2eb5qVqvNlmD6DEzec6RqHVAbA2DE84hOiZi46In4yC2AZdOrBTgozRF0QYbRCIaJm9nCn9-v7pe9rU0w_CRaoT6iFv_w60PuEfZb2SbRvk</recordid><startdate>20240112</startdate><enddate>20240112</enddate><general>John Wiley & Sons, Inc</general><scope/></search><sort><creationdate>20240112</creationdate><title>History of AI and Its Promise in Healthcare</title></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b1181-244ad99f709a32a07ea40d7a99a27d89270dfc167e3e508deb55fc3ceed12a983</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2024</creationdate><topic>artificial intelligence</topic><topic>classification system</topic><topic>data sources</topic><topic>deep learning</topic><topic>foundation models</topic><topic>healthcare</topic><topic>machine learning</topic><toplevel>online_resources</toplevel></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Razmi, Ronald M</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>History of AI and Its Promise in Healthcare</atitle><btitle>AI Doctor</btitle><date>2024-01-12</date><risdate>2024</risdate><spage>1</spage><epage>26</epage><pages>1-26</pages><isbn>1394240163</isbn><isbn>9781394240166</isbn><eisbn>1394240198</eisbn><eisbn>9781394240197</eisbn><abstract>Artificial intelligence (AI) isn't magic, and nor is it going to spark a robot uprising or replace the doctor entirely. Mathematical terms like machine learning and deep learning are used as easy ways to explain statistical computer algorithms that use data to identify patterns and make accurate predictions. There are different levels of AI systems, with plenty of different algorithms being capable of consuming and classifying data or using it to make predictions. Although medicine has been notoriously slow to adopt innovations—and digital innovations in particular—the massive applications of AI in medicine are gaining significant momentum. Given the emergence of large language models and generative AI, there's great excitement about the possibilities they represent in healthcare. Foundation models—the latest generation of AI models—are trained on massive, diverse datasets and can be applied to numerous downstream tasks.</abstract><cop>Hoboken, NJ, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/9781394240197.ch1</doi><tpages>25</tpages></addata></record> |
fulltext | fulltext |
identifier | ISBN: 1394240163 |
ispartof | AI Doctor, 2024, p.1-26 |
issn | |
language | eng |
recordid | cdi_wiley_ebooks_10_1002_9781394240197_ch1_ch1 |
source | O'Reilly Online Learning: Academic/Public Library Edition |
subjects | artificial intelligence classification system data sources deep learning foundation models healthcare machine learning |
title | History of AI and Its Promise in Healthcare |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T11%3A08%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=History%20of%20AI%20and%20Its%20Promise%20in%20Healthcare&rft.btitle=AI%20Doctor&rft.au=Razmi,%20Ronald%20M&rft.date=2024-01-12&rft.spage=1&rft.epage=26&rft.pages=1-26&rft.isbn=1394240163&rft.isbn_list=9781394240166&rft_id=info:doi/10.1002/9781394240197.ch1&rft_dat=%3Cwiley%3E10.1002/9781394240197.ch1%3C/wiley%3E%3Curl%3E%3C/url%3E&rft.eisbn=1394240198&rft.eisbn_list=9781394240197&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |