Geographically Weighted Regression for Official Land Prices and their Temporal Variation in Tokyo
This chapter establishes Tokyo official land price data using geographically weighted regression (GWR) and multi‐scale GWR (MGWR) models. The GWR model spatially explores the varying relationships between land prices and the exploratory variables. LeSage and Pace derived estimates focusing on the re...
Gespeichert in:
Format: | Buchkapitel |
---|---|
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 274 |
---|---|
container_issue | |
container_start_page | 259 |
container_title | |
container_volume | |
description | This chapter establishes Tokyo official land price data using geographically weighted regression (GWR) and multi‐scale GWR (MGWR) models. The GWR model spatially explores the varying relationships between land prices and the exploratory variables. LeSage and Pace derived estimates focusing on the results of spatiotemporal long‐term equilibrium with regard to the use of cross‐sectional data and focusing on the dynamics embodied by time‐dependent parameters with regard to the use of spatiotemporal data. The chapter explains the GWR model, which is a spatial econometric model that considers both spatial dependence and spatial heterogeneity, and its extension, the MGWR model. It presents the data used to obtain the land price function. The chapter estimates the non‐spatial model by ordinary least squares, GWR and MGWR using published land prices. It considers secular changes by visualizing the spatial prediction distribution of the parameters. |
doi_str_mv | 10.1002/9781394165513.ch19 |
format | Book Chapter |
fullrecord | <record><control><sourceid>wiley</sourceid><recordid>TN_cdi_wiley_ebooks_10_1002_9781394165513_ch19_ch19</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10.1002/9781394165513.ch19</sourcerecordid><originalsourceid>FETCH-LOGICAL-s1149-b6979eed4d166a0f70f50a8be2aadc97855e21bb9db32fe2442fd4cd55392ef93</originalsourceid><addsrcrecordid>eNpVkN1KAzEQhSMiqLUv4FVeoDWTn01zKUWrUKhI_blbks1kN3RtSnZB-vbuqgjezBlmzhyYj5BrYHNgjN8YvQBhJBRKgZhXDZgTcvk3eT8l09GhF4VgWgM_J9Oui45JA0yDlhfErjDV2R6aWNm2PdI3jHXTo6fPWGcczGlPQ8p0E0Ksom3p2u49fcqxwo6Obd9gzHSLH4eUh_WrzdH241Xc023aHdMVOQu27XD6qxPycn-3XT7M1pvV4_J2PesApJm5wmiD6KWHorAsaBYUswuH3FpfDV8ohRycM94JHpBLyYOXlVdKGI7BiAkRP7mfscVjiS6lXVcCK0dQ5T9Q5Qjqu4gvIR5eEA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype></control><display><type>book_chapter</type><title>Geographically Weighted Regression for Official Land Prices and their Temporal Variation in Tokyo</title><source>Ebook Central - Academic Complete</source><source>Ebook Central Perpetual and DDA</source><contributor>Karagrigoriou‐Vonta, Christiana ; Dimotikalis, Yiannis ; Zafeiris, Konstantinos N ; Karagrigoriou, Alex ; Skiadas, Christos H</contributor><creatorcontrib>Karagrigoriou‐Vonta, Christiana ; Dimotikalis, Yiannis ; Zafeiris, Konstantinos N ; Karagrigoriou, Alex ; Skiadas, Christos H</creatorcontrib><description>This chapter establishes Tokyo official land price data using geographically weighted regression (GWR) and multi‐scale GWR (MGWR) models. The GWR model spatially explores the varying relationships between land prices and the exploratory variables. LeSage and Pace derived estimates focusing on the results of spatiotemporal long‐term equilibrium with regard to the use of cross‐sectional data and focusing on the dynamics embodied by time‐dependent parameters with regard to the use of spatiotemporal data. The chapter explains the GWR model, which is a spatial econometric model that considers both spatial dependence and spatial heterogeneity, and its extension, the MGWR model. It presents the data used to obtain the land price function. The chapter estimates the non‐spatial model by ordinary least squares, GWR and MGWR using published land prices. It considers secular changes by visualizing the spatial prediction distribution of the parameters.</description><identifier>ISBN: 9781786307712</identifier><identifier>ISBN: 1786307715</identifier><identifier>EISBN: 139416551X</identifier><identifier>EISBN: 9781394165513</identifier><identifier>DOI: 10.1002/9781394165513.ch19</identifier><language>eng</language><publisher>Hoboken, NJ, USA: John Wiley & Sons, Inc</publisher><subject>geographically weighted regression ; non‐spatial model ; ordinary least squares ; spatial dependence ; spatial heterogeneity ; spatiotemporal data ; T okyo official land price data</subject><ispartof>Data Analysis and Related Applications 1, 2022, p.259-274</ispartof><rights>ISTE Ltd 2022</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>779,780,784,793,27916</link.rule.ids></links><search><contributor>Karagrigoriou‐Vonta, Christiana</contributor><contributor>Dimotikalis, Yiannis</contributor><contributor>Zafeiris, Konstantinos N</contributor><contributor>Karagrigoriou, Alex</contributor><contributor>Skiadas, Christos H</contributor><title>Geographically Weighted Regression for Official Land Prices and their Temporal Variation in Tokyo</title><title>Data Analysis and Related Applications 1</title><description>This chapter establishes Tokyo official land price data using geographically weighted regression (GWR) and multi‐scale GWR (MGWR) models. The GWR model spatially explores the varying relationships between land prices and the exploratory variables. LeSage and Pace derived estimates focusing on the results of spatiotemporal long‐term equilibrium with regard to the use of cross‐sectional data and focusing on the dynamics embodied by time‐dependent parameters with regard to the use of spatiotemporal data. The chapter explains the GWR model, which is a spatial econometric model that considers both spatial dependence and spatial heterogeneity, and its extension, the MGWR model. It presents the data used to obtain the land price function. The chapter estimates the non‐spatial model by ordinary least squares, GWR and MGWR using published land prices. It considers secular changes by visualizing the spatial prediction distribution of the parameters.</description><subject>geographically weighted regression</subject><subject>non‐spatial model</subject><subject>ordinary least squares</subject><subject>spatial dependence</subject><subject>spatial heterogeneity</subject><subject>spatiotemporal data</subject><subject>T okyo official land price data</subject><isbn>9781786307712</isbn><isbn>1786307715</isbn><isbn>139416551X</isbn><isbn>9781394165513</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2022</creationdate><recordtype>book_chapter</recordtype><sourceid/><recordid>eNpVkN1KAzEQhSMiqLUv4FVeoDWTn01zKUWrUKhI_blbks1kN3RtSnZB-vbuqgjezBlmzhyYj5BrYHNgjN8YvQBhJBRKgZhXDZgTcvk3eT8l09GhF4VgWgM_J9Oui45JA0yDlhfErjDV2R6aWNm2PdI3jHXTo6fPWGcczGlPQ8p0E0Ksom3p2u49fcqxwo6Obd9gzHSLH4eUh_WrzdH241Xc023aHdMVOQu27XD6qxPycn-3XT7M1pvV4_J2PesApJm5wmiD6KWHorAsaBYUswuH3FpfDV8ohRycM94JHpBLyYOXlVdKGI7BiAkRP7mfscVjiS6lXVcCK0dQ5T9Q5Qjqu4gvIR5eEA</recordid><startdate>20220824</startdate><enddate>20220824</enddate><general>John Wiley & Sons, Inc</general><scope/></search><sort><creationdate>20220824</creationdate><title>Geographically Weighted Regression for Official Land Prices and their Temporal Variation in Tokyo</title></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-s1149-b6979eed4d166a0f70f50a8be2aadc97855e21bb9db32fe2442fd4cd55392ef93</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2022</creationdate><topic>geographically weighted regression</topic><topic>non‐spatial model</topic><topic>ordinary least squares</topic><topic>spatial dependence</topic><topic>spatial heterogeneity</topic><topic>spatiotemporal data</topic><topic>T okyo official land price data</topic><toplevel>online_resources</toplevel></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karagrigoriou‐Vonta, Christiana</au><au>Dimotikalis, Yiannis</au><au>Zafeiris, Konstantinos N</au><au>Karagrigoriou, Alex</au><au>Skiadas, Christos H</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Geographically Weighted Regression for Official Land Prices and their Temporal Variation in Tokyo</atitle><btitle>Data Analysis and Related Applications 1</btitle><date>2022-08-24</date><risdate>2022</risdate><spage>259</spage><epage>274</epage><pages>259-274</pages><isbn>9781786307712</isbn><isbn>1786307715</isbn><eisbn>139416551X</eisbn><eisbn>9781394165513</eisbn><abstract>This chapter establishes Tokyo official land price data using geographically weighted regression (GWR) and multi‐scale GWR (MGWR) models. The GWR model spatially explores the varying relationships between land prices and the exploratory variables. LeSage and Pace derived estimates focusing on the results of spatiotemporal long‐term equilibrium with regard to the use of cross‐sectional data and focusing on the dynamics embodied by time‐dependent parameters with regard to the use of spatiotemporal data. The chapter explains the GWR model, which is a spatial econometric model that considers both spatial dependence and spatial heterogeneity, and its extension, the MGWR model. It presents the data used to obtain the land price function. The chapter estimates the non‐spatial model by ordinary least squares, GWR and MGWR using published land prices. It considers secular changes by visualizing the spatial prediction distribution of the parameters.</abstract><cop>Hoboken, NJ, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/9781394165513.ch19</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISBN: 9781786307712 |
ispartof | Data Analysis and Related Applications 1, 2022, p.259-274 |
issn | |
language | eng |
recordid | cdi_wiley_ebooks_10_1002_9781394165513_ch19_ch19 |
source | Ebook Central - Academic Complete; Ebook Central Perpetual and DDA |
subjects | geographically weighted regression non‐spatial model ordinary least squares spatial dependence spatial heterogeneity spatiotemporal data T okyo official land price data |
title | Geographically Weighted Regression for Official Land Prices and their Temporal Variation in Tokyo |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T00%3A52%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Geographically%20Weighted%20Regression%20for%20Official%20Land%20Prices%20and%20their%20Temporal%20Variation%20in%20Tokyo&rft.btitle=Data%20Analysis%20and%20Related%20Applications%201&rft.au=Karagrigoriou%E2%80%90Vonta,%20Christiana&rft.date=2022-08-24&rft.spage=259&rft.epage=274&rft.pages=259-274&rft.isbn=9781786307712&rft.isbn_list=1786307715&rft_id=info:doi/10.1002/9781394165513.ch19&rft_dat=%3Cwiley%3E10.1002/9781394165513.ch19%3C/wiley%3E%3Curl%3E%3C/url%3E&rft.eisbn=139416551X&rft.eisbn_list=9781394165513&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |