Geographically Weighted Regression for Official Land Prices and their Temporal Variation in Tokyo

This chapter establishes Tokyo official land price data using geographically weighted regression (GWR) and multi‐scale GWR (MGWR) models. The GWR model spatially explores the varying relationships between land prices and the exploratory variables. LeSage and Pace derived estimates focusing on the re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 274
container_issue
container_start_page 259
container_title
container_volume
description This chapter establishes Tokyo official land price data using geographically weighted regression (GWR) and multi‐scale GWR (MGWR) models. The GWR model spatially explores the varying relationships between land prices and the exploratory variables. LeSage and Pace derived estimates focusing on the results of spatiotemporal long‐term equilibrium with regard to the use of cross‐sectional data and focusing on the dynamics embodied by time‐dependent parameters with regard to the use of spatiotemporal data. The chapter explains the GWR model, which is a spatial econometric model that considers both spatial dependence and spatial heterogeneity, and its extension, the MGWR model. It presents the data used to obtain the land price function. The chapter estimates the non‐spatial model by ordinary least squares, GWR and MGWR using published land prices. It considers secular changes by visualizing the spatial prediction distribution of the parameters.
doi_str_mv 10.1002/9781394165513.ch19
format Book Chapter
fullrecord <record><control><sourceid>wiley</sourceid><recordid>TN_cdi_wiley_ebooks_10_1002_9781394165513_ch19_ch19</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10.1002/9781394165513.ch19</sourcerecordid><originalsourceid>FETCH-LOGICAL-s1149-b6979eed4d166a0f70f50a8be2aadc97855e21bb9db32fe2442fd4cd55392ef93</originalsourceid><addsrcrecordid>eNpVkN1KAzEQhSMiqLUv4FVeoDWTn01zKUWrUKhI_blbks1kN3RtSnZB-vbuqgjezBlmzhyYj5BrYHNgjN8YvQBhJBRKgZhXDZgTcvk3eT8l09GhF4VgWgM_J9Oui45JA0yDlhfErjDV2R6aWNm2PdI3jHXTo6fPWGcczGlPQ8p0E0Ksom3p2u49fcqxwo6Obd9gzHSLH4eUh_WrzdH241Xc023aHdMVOQu27XD6qxPycn-3XT7M1pvV4_J2PesApJm5wmiD6KWHorAsaBYUswuH3FpfDV8ohRycM94JHpBLyYOXlVdKGI7BiAkRP7mfscVjiS6lXVcCK0dQ5T9Q5Qjqu4gvIR5eEA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype></control><display><type>book_chapter</type><title>Geographically Weighted Regression for Official Land Prices and their Temporal Variation in Tokyo</title><source>Ebook Central - Academic Complete</source><source>Ebook Central Perpetual and DDA</source><contributor>Karagrigoriou‐Vonta, Christiana ; Dimotikalis, Yiannis ; Zafeiris, Konstantinos N ; Karagrigoriou, Alex ; Skiadas, Christos H</contributor><creatorcontrib>Karagrigoriou‐Vonta, Christiana ; Dimotikalis, Yiannis ; Zafeiris, Konstantinos N ; Karagrigoriou, Alex ; Skiadas, Christos H</creatorcontrib><description>This chapter establishes Tokyo official land price data using geographically weighted regression (GWR) and multi‐scale GWR (MGWR) models. The GWR model spatially explores the varying relationships between land prices and the exploratory variables. LeSage and Pace derived estimates focusing on the results of spatiotemporal long‐term equilibrium with regard to the use of cross‐sectional data and focusing on the dynamics embodied by time‐dependent parameters with regard to the use of spatiotemporal data. The chapter explains the GWR model, which is a spatial econometric model that considers both spatial dependence and spatial heterogeneity, and its extension, the MGWR model. It presents the data used to obtain the land price function. The chapter estimates the non‐spatial model by ordinary least squares, GWR and MGWR using published land prices. It considers secular changes by visualizing the spatial prediction distribution of the parameters.</description><identifier>ISBN: 9781786307712</identifier><identifier>ISBN: 1786307715</identifier><identifier>EISBN: 139416551X</identifier><identifier>EISBN: 9781394165513</identifier><identifier>DOI: 10.1002/9781394165513.ch19</identifier><language>eng</language><publisher>Hoboken, NJ, USA: John Wiley &amp; Sons, Inc</publisher><subject>geographically weighted regression ; non‐spatial model ; ordinary least squares ; spatial dependence ; spatial heterogeneity ; spatiotemporal data ; T okyo official land price data</subject><ispartof>Data Analysis and Related Applications 1, 2022, p.259-274</ispartof><rights>ISTE Ltd 2022</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>779,780,784,793,27916</link.rule.ids></links><search><contributor>Karagrigoriou‐Vonta, Christiana</contributor><contributor>Dimotikalis, Yiannis</contributor><contributor>Zafeiris, Konstantinos N</contributor><contributor>Karagrigoriou, Alex</contributor><contributor>Skiadas, Christos H</contributor><title>Geographically Weighted Regression for Official Land Prices and their Temporal Variation in Tokyo</title><title>Data Analysis and Related Applications 1</title><description>This chapter establishes Tokyo official land price data using geographically weighted regression (GWR) and multi‐scale GWR (MGWR) models. The GWR model spatially explores the varying relationships between land prices and the exploratory variables. LeSage and Pace derived estimates focusing on the results of spatiotemporal long‐term equilibrium with regard to the use of cross‐sectional data and focusing on the dynamics embodied by time‐dependent parameters with regard to the use of spatiotemporal data. The chapter explains the GWR model, which is a spatial econometric model that considers both spatial dependence and spatial heterogeneity, and its extension, the MGWR model. It presents the data used to obtain the land price function. The chapter estimates the non‐spatial model by ordinary least squares, GWR and MGWR using published land prices. It considers secular changes by visualizing the spatial prediction distribution of the parameters.</description><subject>geographically weighted regression</subject><subject>non‐spatial model</subject><subject>ordinary least squares</subject><subject>spatial dependence</subject><subject>spatial heterogeneity</subject><subject>spatiotemporal data</subject><subject>T okyo official land price data</subject><isbn>9781786307712</isbn><isbn>1786307715</isbn><isbn>139416551X</isbn><isbn>9781394165513</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2022</creationdate><recordtype>book_chapter</recordtype><sourceid/><recordid>eNpVkN1KAzEQhSMiqLUv4FVeoDWTn01zKUWrUKhI_blbks1kN3RtSnZB-vbuqgjezBlmzhyYj5BrYHNgjN8YvQBhJBRKgZhXDZgTcvk3eT8l09GhF4VgWgM_J9Oui45JA0yDlhfErjDV2R6aWNm2PdI3jHXTo6fPWGcczGlPQ8p0E0Ksom3p2u49fcqxwo6Obd9gzHSLH4eUh_WrzdH241Xc023aHdMVOQu27XD6qxPycn-3XT7M1pvV4_J2PesApJm5wmiD6KWHorAsaBYUswuH3FpfDV8ohRycM94JHpBLyYOXlVdKGI7BiAkRP7mfscVjiS6lXVcCK0dQ5T9Q5Qjqu4gvIR5eEA</recordid><startdate>20220824</startdate><enddate>20220824</enddate><general>John Wiley &amp; Sons, Inc</general><scope/></search><sort><creationdate>20220824</creationdate><title>Geographically Weighted Regression for Official Land Prices and their Temporal Variation in Tokyo</title></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-s1149-b6979eed4d166a0f70f50a8be2aadc97855e21bb9db32fe2442fd4cd55392ef93</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2022</creationdate><topic>geographically weighted regression</topic><topic>non‐spatial model</topic><topic>ordinary least squares</topic><topic>spatial dependence</topic><topic>spatial heterogeneity</topic><topic>spatiotemporal data</topic><topic>T okyo official land price data</topic><toplevel>online_resources</toplevel></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karagrigoriou‐Vonta, Christiana</au><au>Dimotikalis, Yiannis</au><au>Zafeiris, Konstantinos N</au><au>Karagrigoriou, Alex</au><au>Skiadas, Christos H</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Geographically Weighted Regression for Official Land Prices and their Temporal Variation in Tokyo</atitle><btitle>Data Analysis and Related Applications 1</btitle><date>2022-08-24</date><risdate>2022</risdate><spage>259</spage><epage>274</epage><pages>259-274</pages><isbn>9781786307712</isbn><isbn>1786307715</isbn><eisbn>139416551X</eisbn><eisbn>9781394165513</eisbn><abstract>This chapter establishes Tokyo official land price data using geographically weighted regression (GWR) and multi‐scale GWR (MGWR) models. The GWR model spatially explores the varying relationships between land prices and the exploratory variables. LeSage and Pace derived estimates focusing on the results of spatiotemporal long‐term equilibrium with regard to the use of cross‐sectional data and focusing on the dynamics embodied by time‐dependent parameters with regard to the use of spatiotemporal data. The chapter explains the GWR model, which is a spatial econometric model that considers both spatial dependence and spatial heterogeneity, and its extension, the MGWR model. It presents the data used to obtain the land price function. The chapter estimates the non‐spatial model by ordinary least squares, GWR and MGWR using published land prices. It considers secular changes by visualizing the spatial prediction distribution of the parameters.</abstract><cop>Hoboken, NJ, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/9781394165513.ch19</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISBN: 9781786307712
ispartof Data Analysis and Related Applications 1, 2022, p.259-274
issn
language eng
recordid cdi_wiley_ebooks_10_1002_9781394165513_ch19_ch19
source Ebook Central - Academic Complete; Ebook Central Perpetual and DDA
subjects geographically weighted regression
non‐spatial model
ordinary least squares
spatial dependence
spatial heterogeneity
spatiotemporal data
T okyo official land price data
title Geographically Weighted Regression for Official Land Prices and their Temporal Variation in Tokyo
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T00%3A52%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Geographically%20Weighted%20Regression%20for%20Official%20Land%20Prices%20and%20their%20Temporal%20Variation%20in%20Tokyo&rft.btitle=Data%20Analysis%20and%20Related%20Applications%201&rft.au=Karagrigoriou%E2%80%90Vonta,%20Christiana&rft.date=2022-08-24&rft.spage=259&rft.epage=274&rft.pages=259-274&rft.isbn=9781786307712&rft.isbn_list=1786307715&rft_id=info:doi/10.1002/9781394165513.ch19&rft_dat=%3Cwiley%3E10.1002/9781394165513.ch19%3C/wiley%3E%3Curl%3E%3C/url%3E&rft.eisbn=139416551X&rft.eisbn_list=9781394165513&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true