The Complex‐Variable Method
The velocity potential and the stream function of a two‐dimensional irrotational flow of an inviscid fluid satisfy relations identical to the Cauchy‐Riemann conditions for an analytic function of a complex variable. This allows the application of the full machinery of complex variable theory to form...
Gespeichert in:
Format: | Buchkapitel |
---|---|
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 97 |
---|---|
container_issue | |
container_start_page | 71 |
container_title | |
container_volume | |
description | The velocity potential and the stream function of a two‐dimensional irrotational flow of an inviscid fluid satisfy relations identical to the Cauchy‐Riemann conditions for an analytic function of a complex variable. This allows the application of the full machinery of complex variable theory to formulate and analyze two dimensional irrotational flows of an inviscid fluid. More specifically, the velocity potential and the stream function can be combined to form an analytic function of a complex variable
z
=
x
+
iy
, in the
x
,
y
‐plane occupied by the flow. Furthermore, one may use the idea of conformal mapping in complex variable theory to relate the solution to a two‐dimensional potential flow for one geometry with that for a simpler geometry. In cases where the flow separates from a rigid boundary and free streamlines appear, one may use the Schwarz‐Christoffel transformation to formulate and analyze the flow. |
doi_str_mv | 10.1002/9781119765158.ch6 |
format | Book Chapter |
fullrecord | <record><control><sourceid>wiley</sourceid><recordid>TN_cdi_wiley_ebooks_10_1002_9781119765158_ch6_ch6</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10.1002/9781119765158.ch6</sourcerecordid><originalsourceid>FETCH-wiley_ebooks_10_1002_9781119765158_ch6_ch63</originalsourceid><addsrcrecordid>eNpjYJA0NNAzNDAw0rc0tzA0NLQ0NzM1NLXQS84wY2TgggsYMzPwQhUYGhiaGphyMPAWF2cZADWaWRoYmJtzMsiGZKQqOOfnFuSkVjxqmBCWWJSZmJSTquCbWpKRn8LDwJqWmFOcyguluRkM3VxDnD10yzNzUivjU5Py87OL4w0N4kFuiUdxSzzQLSBsTI4eACsYO0M</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype></control><display><type>book_chapter</type><title>The Complex‐Variable Method</title><source>Ebook Central - Academic Complete</source><source>O'Reilly Online Learning: Academic/Public Library Edition</source><source>Ebook Central Perpetual and DDA</source><contributor>Shivamoggi, Bhimsen K</contributor><creatorcontrib>Shivamoggi, Bhimsen K</creatorcontrib><description>The velocity potential and the stream function of a two‐dimensional irrotational flow of an inviscid fluid satisfy relations identical to the Cauchy‐Riemann conditions for an analytic function of a complex variable. This allows the application of the full machinery of complex variable theory to formulate and analyze two dimensional irrotational flows of an inviscid fluid. More specifically, the velocity potential and the stream function can be combined to form an analytic function of a complex variable
z
=
x
+
iy
, in the
x
,
y
‐plane occupied by the flow. Furthermore, one may use the idea of conformal mapping in complex variable theory to relate the solution to a two‐dimensional potential flow for one geometry with that for a simpler geometry. In cases where the flow separates from a rigid boundary and free streamlines appear, one may use the Schwarz‐Christoffel transformation to formulate and analyze the flow.</description><identifier>ISBN: 9781119101505</identifier><identifier>ISBN: 1119101506</identifier><identifier>EISBN: 1119765153</identifier><identifier>EISBN: 9781119765158</identifier><identifier>DOI: 10.1002/9781119765158.ch6</identifier><language>eng</language><publisher>Hoboken, NJ, USA: John Wiley & Sons, Inc</publisher><subject>Complex‐Variable ; Method</subject><ispartof>Introduction to Theoretical and Mathematical Fluid Dynamics, 2022, p.71-97</ispartof><rights>2023 John Wiley and Sons, Inc.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>779,780,784,793,27925</link.rule.ids></links><search><contributor>Shivamoggi, Bhimsen K</contributor><title>The Complex‐Variable Method</title><title>Introduction to Theoretical and Mathematical Fluid Dynamics</title><description>The velocity potential and the stream function of a two‐dimensional irrotational flow of an inviscid fluid satisfy relations identical to the Cauchy‐Riemann conditions for an analytic function of a complex variable. This allows the application of the full machinery of complex variable theory to formulate and analyze two dimensional irrotational flows of an inviscid fluid. More specifically, the velocity potential and the stream function can be combined to form an analytic function of a complex variable
z
=
x
+
iy
, in the
x
,
y
‐plane occupied by the flow. Furthermore, one may use the idea of conformal mapping in complex variable theory to relate the solution to a two‐dimensional potential flow for one geometry with that for a simpler geometry. In cases where the flow separates from a rigid boundary and free streamlines appear, one may use the Schwarz‐Christoffel transformation to formulate and analyze the flow.</description><subject>Complex‐Variable</subject><subject>Method</subject><isbn>9781119101505</isbn><isbn>1119101506</isbn><isbn>1119765153</isbn><isbn>9781119765158</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2022</creationdate><recordtype>book_chapter</recordtype><sourceid/><recordid>eNpjYJA0NNAzNDAw0rc0tzA0NLQ0NzM1NLXQS84wY2TgggsYMzPwQhUYGhiaGphyMPAWF2cZADWaWRoYmJtzMsiGZKQqOOfnFuSkVjxqmBCWWJSZmJSTquCbWpKRn8LDwJqWmFOcyguluRkM3VxDnD10yzNzUivjU5Py87OL4w0N4kFuiUdxSzzQLSBsTI4eACsYO0M</recordid><startdate>20220910</startdate><enddate>20220910</enddate><general>John Wiley & Sons, Inc</general><scope/></search><sort><creationdate>20220910</creationdate><title>The Complex‐Variable Method</title></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-wiley_ebooks_10_1002_9781119765158_ch6_ch63</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Complex‐Variable</topic><topic>Method</topic><toplevel>online_resources</toplevel></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shivamoggi, Bhimsen K</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>The Complex‐Variable Method</atitle><btitle>Introduction to Theoretical and Mathematical Fluid Dynamics</btitle><date>2022-09-10</date><risdate>2022</risdate><spage>71</spage><epage>97</epage><pages>71-97</pages><isbn>9781119101505</isbn><isbn>1119101506</isbn><eisbn>1119765153</eisbn><eisbn>9781119765158</eisbn><abstract>The velocity potential and the stream function of a two‐dimensional irrotational flow of an inviscid fluid satisfy relations identical to the Cauchy‐Riemann conditions for an analytic function of a complex variable. This allows the application of the full machinery of complex variable theory to formulate and analyze two dimensional irrotational flows of an inviscid fluid. More specifically, the velocity potential and the stream function can be combined to form an analytic function of a complex variable
z
=
x
+
iy
, in the
x
,
y
‐plane occupied by the flow. Furthermore, one may use the idea of conformal mapping in complex variable theory to relate the solution to a two‐dimensional potential flow for one geometry with that for a simpler geometry. In cases where the flow separates from a rigid boundary and free streamlines appear, one may use the Schwarz‐Christoffel transformation to formulate and analyze the flow.</abstract><cop>Hoboken, NJ, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/9781119765158.ch6</doi><tpages>27</tpages></addata></record> |
fulltext | fulltext |
identifier | ISBN: 9781119101505 |
ispartof | Introduction to Theoretical and Mathematical Fluid Dynamics, 2022, p.71-97 |
issn | |
language | eng |
recordid | cdi_wiley_ebooks_10_1002_9781119765158_ch6_ch6 |
source | Ebook Central - Academic Complete; O'Reilly Online Learning: Academic/Public Library Edition; Ebook Central Perpetual and DDA |
subjects | Complex‐Variable Method |
title | The Complex‐Variable Method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T12%3A18%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=The%20Complex%E2%80%90Variable%20Method&rft.btitle=Introduction%20to%20Theoretical%20and%20Mathematical%20Fluid%20Dynamics&rft.au=Shivamoggi,%20Bhimsen%20K&rft.date=2022-09-10&rft.spage=71&rft.epage=97&rft.pages=71-97&rft.isbn=9781119101505&rft.isbn_list=1119101506&rft_id=info:doi/10.1002/9781119765158.ch6&rft_dat=%3Cwiley%3E10.1002/9781119765158.ch6%3C/wiley%3E%3Curl%3E%3C/url%3E&rft.eisbn=1119765153&rft.eisbn_list=9781119765158&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |