The Complex‐Variable Method

The velocity potential and the stream function of a two‐dimensional irrotational flow of an inviscid fluid satisfy relations identical to the Cauchy‐Riemann conditions for an analytic function of a complex variable. This allows the application of the full machinery of complex variable theory to form...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 97
container_issue
container_start_page 71
container_title
container_volume
description The velocity potential and the stream function of a two‐dimensional irrotational flow of an inviscid fluid satisfy relations identical to the Cauchy‐Riemann conditions for an analytic function of a complex variable. This allows the application of the full machinery of complex variable theory to formulate and analyze two dimensional irrotational flows of an inviscid fluid. More specifically, the velocity potential and the stream function can be combined to form an analytic function of a complex variable z = x + iy , in the x , y ‐plane occupied by the flow. Furthermore, one may use the idea of conformal mapping in complex variable theory to relate the solution to a two‐dimensional potential flow for one geometry with that for a simpler geometry. In cases where the flow separates from a rigid boundary and free streamlines appear, one may use the Schwarz‐Christoffel transformation to formulate and analyze the flow.
doi_str_mv 10.1002/9781119765158.ch6
format Book Chapter
fullrecord <record><control><sourceid>wiley</sourceid><recordid>TN_cdi_wiley_ebooks_10_1002_9781119765158_ch6_ch6</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10.1002/9781119765158.ch6</sourcerecordid><originalsourceid>FETCH-wiley_ebooks_10_1002_9781119765158_ch6_ch63</originalsourceid><addsrcrecordid>eNpjYJA0NNAzNDAw0rc0tzA0NLQ0NzM1NLXQS84wY2TgggsYMzPwQhUYGhiaGphyMPAWF2cZADWaWRoYmJtzMsiGZKQqOOfnFuSkVjxqmBCWWJSZmJSTquCbWpKRn8LDwJqWmFOcyguluRkM3VxDnD10yzNzUivjU5Py87OL4w0N4kFuiUdxSzzQLSBsTI4eACsYO0M</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype></control><display><type>book_chapter</type><title>The Complex‐Variable Method</title><source>Ebook Central - Academic Complete</source><source>O'Reilly Online Learning: Academic/Public Library Edition</source><source>Ebook Central Perpetual and DDA</source><contributor>Shivamoggi, Bhimsen K</contributor><creatorcontrib>Shivamoggi, Bhimsen K</creatorcontrib><description>The velocity potential and the stream function of a two‐dimensional irrotational flow of an inviscid fluid satisfy relations identical to the Cauchy‐Riemann conditions for an analytic function of a complex variable. This allows the application of the full machinery of complex variable theory to formulate and analyze two dimensional irrotational flows of an inviscid fluid. More specifically, the velocity potential and the stream function can be combined to form an analytic function of a complex variable z = x + iy , in the x , y ‐plane occupied by the flow. Furthermore, one may use the idea of conformal mapping in complex variable theory to relate the solution to a two‐dimensional potential flow for one geometry with that for a simpler geometry. In cases where the flow separates from a rigid boundary and free streamlines appear, one may use the Schwarz‐Christoffel transformation to formulate and analyze the flow.</description><identifier>ISBN: 9781119101505</identifier><identifier>ISBN: 1119101506</identifier><identifier>EISBN: 1119765153</identifier><identifier>EISBN: 9781119765158</identifier><identifier>DOI: 10.1002/9781119765158.ch6</identifier><language>eng</language><publisher>Hoboken, NJ, USA: John Wiley &amp; Sons, Inc</publisher><subject>Complex‐Variable ; Method</subject><ispartof>Introduction to Theoretical and Mathematical Fluid Dynamics, 2022, p.71-97</ispartof><rights>2023 John Wiley and Sons, Inc.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>779,780,784,793,27925</link.rule.ids></links><search><contributor>Shivamoggi, Bhimsen K</contributor><title>The Complex‐Variable Method</title><title>Introduction to Theoretical and Mathematical Fluid Dynamics</title><description>The velocity potential and the stream function of a two‐dimensional irrotational flow of an inviscid fluid satisfy relations identical to the Cauchy‐Riemann conditions for an analytic function of a complex variable. This allows the application of the full machinery of complex variable theory to formulate and analyze two dimensional irrotational flows of an inviscid fluid. More specifically, the velocity potential and the stream function can be combined to form an analytic function of a complex variable z = x + iy , in the x , y ‐plane occupied by the flow. Furthermore, one may use the idea of conformal mapping in complex variable theory to relate the solution to a two‐dimensional potential flow for one geometry with that for a simpler geometry. In cases where the flow separates from a rigid boundary and free streamlines appear, one may use the Schwarz‐Christoffel transformation to formulate and analyze the flow.</description><subject>Complex‐Variable</subject><subject>Method</subject><isbn>9781119101505</isbn><isbn>1119101506</isbn><isbn>1119765153</isbn><isbn>9781119765158</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2022</creationdate><recordtype>book_chapter</recordtype><sourceid/><recordid>eNpjYJA0NNAzNDAw0rc0tzA0NLQ0NzM1NLXQS84wY2TgggsYMzPwQhUYGhiaGphyMPAWF2cZADWaWRoYmJtzMsiGZKQqOOfnFuSkVjxqmBCWWJSZmJSTquCbWpKRn8LDwJqWmFOcyguluRkM3VxDnD10yzNzUivjU5Py87OL4w0N4kFuiUdxSzzQLSBsTI4eACsYO0M</recordid><startdate>20220910</startdate><enddate>20220910</enddate><general>John Wiley &amp; Sons, Inc</general><scope/></search><sort><creationdate>20220910</creationdate><title>The Complex‐Variable Method</title></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-wiley_ebooks_10_1002_9781119765158_ch6_ch63</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Complex‐Variable</topic><topic>Method</topic><toplevel>online_resources</toplevel></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shivamoggi, Bhimsen K</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>The Complex‐Variable Method</atitle><btitle>Introduction to Theoretical and Mathematical Fluid Dynamics</btitle><date>2022-09-10</date><risdate>2022</risdate><spage>71</spage><epage>97</epage><pages>71-97</pages><isbn>9781119101505</isbn><isbn>1119101506</isbn><eisbn>1119765153</eisbn><eisbn>9781119765158</eisbn><abstract>The velocity potential and the stream function of a two‐dimensional irrotational flow of an inviscid fluid satisfy relations identical to the Cauchy‐Riemann conditions for an analytic function of a complex variable. This allows the application of the full machinery of complex variable theory to formulate and analyze two dimensional irrotational flows of an inviscid fluid. More specifically, the velocity potential and the stream function can be combined to form an analytic function of a complex variable z = x + iy , in the x , y ‐plane occupied by the flow. Furthermore, one may use the idea of conformal mapping in complex variable theory to relate the solution to a two‐dimensional potential flow for one geometry with that for a simpler geometry. In cases where the flow separates from a rigid boundary and free streamlines appear, one may use the Schwarz‐Christoffel transformation to formulate and analyze the flow.</abstract><cop>Hoboken, NJ, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/9781119765158.ch6</doi><tpages>27</tpages></addata></record>
fulltext fulltext
identifier ISBN: 9781119101505
ispartof Introduction to Theoretical and Mathematical Fluid Dynamics, 2022, p.71-97
issn
language eng
recordid cdi_wiley_ebooks_10_1002_9781119765158_ch6_ch6
source Ebook Central - Academic Complete; O'Reilly Online Learning: Academic/Public Library Edition; Ebook Central Perpetual and DDA
subjects Complex‐Variable
Method
title The Complex‐Variable Method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T12%3A18%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=The%20Complex%E2%80%90Variable%20Method&rft.btitle=Introduction%20to%20Theoretical%20and%20Mathematical%20Fluid%20Dynamics&rft.au=Shivamoggi,%20Bhimsen%20K&rft.date=2022-09-10&rft.spage=71&rft.epage=97&rft.pages=71-97&rft.isbn=9781119101505&rft.isbn_list=1119101506&rft_id=info:doi/10.1002/9781119765158.ch6&rft_dat=%3Cwiley%3E10.1002/9781119765158.ch6%3C/wiley%3E%3Curl%3E%3C/url%3E&rft.eisbn=1119765153&rft.eisbn_list=9781119765158&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true