2Es of TIS

Tourism industry could be one of the largest sources of revenue for any country. After the emergence of Web 2.0, it is also one of the largest data intensive industries in the world. Tourism‐rich countries often use Tourism Information Systems (TIS) for management of tourism‐related data. These syst...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Missen, Malik M. Saad, Coustaty, Mickaël, Asmat, Hina, Firdous, Amnah, Akhtar, Nadeem, Akram, Muhammad, Prasath, V. B. Surya
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 70
container_issue
container_start_page 45
container_title
container_volume
creator Missen, Malik M. Saad
Coustaty, Mickaël
Asmat, Hina
Firdous, Amnah
Akhtar, Nadeem
Akram, Muhammad
Prasath, V. B. Surya
description Tourism industry could be one of the largest sources of revenue for any country. After the emergence of Web 2.0, it is also one of the largest data intensive industries in the world. Tourism‐rich countries often use Tourism Information Systems (TIS) for management of tourism‐related data. These systems are used are used on several levels of tourism stakeholder's hierarchy from data generation and exchange to intelligent decision making. Data exchange and extraction are core tasks that a generic TIS is supposed to perform. In this chapter, we discuss both of these processes with respect to TIS. We describe the importance of these processes and review how these are being dealt by researchers currently. Further, we highlight the limitations of current approaches of data exchange and extraction and identify potent future solutions that can enhance the performance of TIS in many aspects can drive future recommender systems.
doi_str_mv 10.1002/9781119711582.ch3
format Book Chapter
fullrecord <record><control><sourceid>wiley</sourceid><recordid>TN_cdi_wiley_ebooks_10_1002_9781119711582_ch3_ch3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10.1002/9781119711582.ch3</sourcerecordid><originalsourceid>FETCH-wiley_ebooks_10_1002_9781119711582_ch3_ch33</originalsourceid><addsrcrecordid>eNpjYJA0NNAzNDAw0rc0tzA0NLQ0NzQ0tTDSS84wZmTggguYMDPwIikwN-Vg4C0uzkwyMDEyNjI0NbLkZOAyci1WyE9TCPEM5mFgTUvMKU7lhdLcDIZuriHOHrrlmTmplfGpSfn52cXxhgbxIIvjUSyOB1oMwsbk6dHFogdVbVVmAVh9QUqaMQBJMEFC</addsrcrecordid><sourcetype>Enrichment Source</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype></control><display><type>book_chapter</type><title>2Es of TIS</title><source>O'Reilly Online Learning: Academic/Public Library Edition</source><creator>Missen, Malik M. Saad ; Coustaty, Mickaël ; Asmat, Hina ; Firdous, Amnah ; Akhtar, Nadeem ; Akram, Muhammad ; Prasath, V. B. Surya</creator><contributor>Jain, Sarika ; Chatterjee, Jyotir Moy ; Gupta, Priya ; Elngar, Ahmed A ; Mohanty, Sachi Nandan</contributor><creatorcontrib>Missen, Malik M. Saad ; Coustaty, Mickaël ; Asmat, Hina ; Firdous, Amnah ; Akhtar, Nadeem ; Akram, Muhammad ; Prasath, V. B. Surya ; Jain, Sarika ; Chatterjee, Jyotir Moy ; Gupta, Priya ; Elngar, Ahmed A ; Mohanty, Sachi Nandan</creatorcontrib><description>Tourism industry could be one of the largest sources of revenue for any country. After the emergence of Web 2.0, it is also one of the largest data intensive industries in the world. Tourism‐rich countries often use Tourism Information Systems (TIS) for management of tourism‐related data. These systems are used are used on several levels of tourism stakeholder's hierarchy from data generation and exchange to intelligent decision making. Data exchange and extraction are core tasks that a generic TIS is supposed to perform. In this chapter, we discuss both of these processes with respect to TIS. We describe the importance of these processes and review how these are being dealt by researchers currently. Further, we highlight the limitations of current approaches of data exchange and extraction and identify potent future solutions that can enhance the performance of TIS in many aspects can drive future recommender systems.</description><identifier>ISBN: 9781119711575</identifier><identifier>ISBN: 1119711576</identifier><identifier>EISBN: 1119711584</identifier><identifier>EISBN: 9781119711582</identifier><identifier>DOI: 10.1002/9781119711582.ch3</identifier><language>eng</language><publisher>Hoboken, NJ, USA: John Wiley &amp; Sons, Inc</publisher><subject>information exchange ; Information extraction ; opinion extraction ; tourism information system ; tourism tecommender system</subject><ispartof>Recommender System with Machine Learning and Artificial Intelligence, 2020, p.45-70</ispartof><rights>2020 Scrivener Publishing LLC</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>775,776,780,789,27904</link.rule.ids></links><search><contributor>Jain, Sarika</contributor><contributor>Chatterjee, Jyotir Moy</contributor><contributor>Gupta, Priya</contributor><contributor>Elngar, Ahmed A</contributor><contributor>Mohanty, Sachi Nandan</contributor><creatorcontrib>Missen, Malik M. Saad</creatorcontrib><creatorcontrib>Coustaty, Mickaël</creatorcontrib><creatorcontrib>Asmat, Hina</creatorcontrib><creatorcontrib>Firdous, Amnah</creatorcontrib><creatorcontrib>Akhtar, Nadeem</creatorcontrib><creatorcontrib>Akram, Muhammad</creatorcontrib><creatorcontrib>Prasath, V. B. Surya</creatorcontrib><title>2Es of TIS</title><title>Recommender System with Machine Learning and Artificial Intelligence</title><description>Tourism industry could be one of the largest sources of revenue for any country. After the emergence of Web 2.0, it is also one of the largest data intensive industries in the world. Tourism‐rich countries often use Tourism Information Systems (TIS) for management of tourism‐related data. These systems are used are used on several levels of tourism stakeholder's hierarchy from data generation and exchange to intelligent decision making. Data exchange and extraction are core tasks that a generic TIS is supposed to perform. In this chapter, we discuss both of these processes with respect to TIS. We describe the importance of these processes and review how these are being dealt by researchers currently. Further, we highlight the limitations of current approaches of data exchange and extraction and identify potent future solutions that can enhance the performance of TIS in many aspects can drive future recommender systems.</description><subject>information exchange</subject><subject>Information extraction</subject><subject>opinion extraction</subject><subject>tourism information system</subject><subject>tourism tecommender system</subject><isbn>9781119711575</isbn><isbn>1119711576</isbn><isbn>1119711584</isbn><isbn>9781119711582</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2020</creationdate><recordtype>book_chapter</recordtype><sourceid/><recordid>eNpjYJA0NNAzNDAw0rc0tzA0NLQ0NzQ0tTDSS84wZmTggguYMDPwIikwN-Vg4C0uzkwyMDEyNjI0NbLkZOAyci1WyE9TCPEM5mFgTUvMKU7lhdLcDIZuriHOHrrlmTmplfGpSfn52cXxhgbxIIvjUSyOB1oMwsbk6dHFogdVbVVmAVh9QUqaMQBJMEFC</recordid><startdate>20200617</startdate><enddate>20200617</enddate><creator>Missen, Malik M. Saad</creator><creator>Coustaty, Mickaël</creator><creator>Asmat, Hina</creator><creator>Firdous, Amnah</creator><creator>Akhtar, Nadeem</creator><creator>Akram, Muhammad</creator><creator>Prasath, V. B. Surya</creator><general>John Wiley &amp; Sons, Inc</general><scope/></search><sort><creationdate>20200617</creationdate><title>2Es of TIS</title><author>Missen, Malik M. Saad ; Coustaty, Mickaël ; Asmat, Hina ; Firdous, Amnah ; Akhtar, Nadeem ; Akram, Muhammad ; Prasath, V. B. Surya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-wiley_ebooks_10_1002_9781119711582_ch3_ch33</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2020</creationdate><topic>information exchange</topic><topic>Information extraction</topic><topic>opinion extraction</topic><topic>tourism information system</topic><topic>tourism tecommender system</topic><toplevel>online_resources</toplevel><creatorcontrib>Missen, Malik M. Saad</creatorcontrib><creatorcontrib>Coustaty, Mickaël</creatorcontrib><creatorcontrib>Asmat, Hina</creatorcontrib><creatorcontrib>Firdous, Amnah</creatorcontrib><creatorcontrib>Akhtar, Nadeem</creatorcontrib><creatorcontrib>Akram, Muhammad</creatorcontrib><creatorcontrib>Prasath, V. B. Surya</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Missen, Malik M. Saad</au><au>Coustaty, Mickaël</au><au>Asmat, Hina</au><au>Firdous, Amnah</au><au>Akhtar, Nadeem</au><au>Akram, Muhammad</au><au>Prasath, V. B. Surya</au><au>Jain, Sarika</au><au>Chatterjee, Jyotir Moy</au><au>Gupta, Priya</au><au>Elngar, Ahmed A</au><au>Mohanty, Sachi Nandan</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>2Es of TIS</atitle><btitle>Recommender System with Machine Learning and Artificial Intelligence</btitle><date>2020-06-17</date><risdate>2020</risdate><spage>45</spage><epage>70</epage><pages>45-70</pages><isbn>9781119711575</isbn><isbn>1119711576</isbn><eisbn>1119711584</eisbn><eisbn>9781119711582</eisbn><abstract>Tourism industry could be one of the largest sources of revenue for any country. After the emergence of Web 2.0, it is also one of the largest data intensive industries in the world. Tourism‐rich countries often use Tourism Information Systems (TIS) for management of tourism‐related data. These systems are used are used on several levels of tourism stakeholder's hierarchy from data generation and exchange to intelligent decision making. Data exchange and extraction are core tasks that a generic TIS is supposed to perform. In this chapter, we discuss both of these processes with respect to TIS. We describe the importance of these processes and review how these are being dealt by researchers currently. Further, we highlight the limitations of current approaches of data exchange and extraction and identify potent future solutions that can enhance the performance of TIS in many aspects can drive future recommender systems.</abstract><cop>Hoboken, NJ, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/9781119711582.ch3</doi><tpages>26</tpages></addata></record>
fulltext fulltext
identifier ISBN: 9781119711575
ispartof Recommender System with Machine Learning and Artificial Intelligence, 2020, p.45-70
issn
language eng
recordid cdi_wiley_ebooks_10_1002_9781119711582_ch3_ch3
source O'Reilly Online Learning: Academic/Public Library Edition
subjects information exchange
Information extraction
opinion extraction
tourism information system
tourism tecommender system
title 2Es of TIS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T12%3A49%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=2Es%20of%20TIS&rft.btitle=Recommender%20System%20with%20Machine%20Learning%20and%20Artificial%20Intelligence&rft.au=Missen,%20Malik%20M.%20Saad&rft.date=2020-06-17&rft.spage=45&rft.epage=70&rft.pages=45-70&rft.isbn=9781119711575&rft.isbn_list=1119711576&rft_id=info:doi/10.1002/9781119711582.ch3&rft_dat=%3Cwiley%3E10.1002/9781119711582.ch3%3C/wiley%3E%3Curl%3E%3C/url%3E&rft.eisbn=1119711584&rft.eisbn_list=9781119711582&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true