Columns

Vertical members whose ratio of length to lateral dimensions is large, and are carrying axial loads are called columns. Large columns fail by buckling. Difference between buckling and critical load is stated. Classical column theory proposed by Euler is used to find the critical load for axially loa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Jerath, Sukhvarsh
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 93
container_issue
container_start_page 31
container_title
container_volume
creator Jerath, Sukhvarsh
description Vertical members whose ratio of length to lateral dimensions is large, and are carrying axial loads are called columns. Large columns fail by buckling. Difference between buckling and critical load is stated. Classical column theory proposed by Euler is used to find the critical load for axially loaded columns with different support conditions at the ends. The theory is based on equilibrium of the system in the displaced shape. The differential equations of equilibrium form an eigenvalue problem. The solution of the eigenvalue problem gives the critical load and the mode shapes. The columns are also analyzed by higher order governing differential equation. Continuous columns, columns with intermediate compressive force, non‐ prismatic columns, and columns supported on elastic supports are studied. Eccentrically loaded and geometrically imperfect columns are covered. Large deflection theory is used to study the post‐buckling behavior, and load versus deformation graphs are plotted. The concept of effective length of columns is given to find the critical compressive force. Rayleigh – Ritz and Galerkin methods are introduced to find critical load in columns by energy method. Elastic column behavior is considered in this chapter. There are nine practice problems and ten references at the end of the chapter.
doi_str_mv 10.1002/9781119694489.ch2
format Book Chapter
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_wiley_ebooks_10_1002_9781119694489_ch2_ch2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC6412241_44_57</sourcerecordid><originalsourceid>FETCH-LOGICAL-p852-3292aeaebeb931c3f6d3f1444e909ddaa8ebfe003b913fbe334c44d7721000953</originalsourceid><addsrcrecordid>eNpVj9tKw0AQhlfEY80D-BCpMzuT7O6lBE9Q8Kb3y24yoWpsajZFfHtTIkgvhmF--H7mU-oWYYkA-s4Zi4iudMzWLeuNPlHZf1aAPj26dXmurlFrQ7YEgkuVpfQOUxGDdcZcqYuq7_af23SjztrQJcn-9kKtHx_W1XO-en16qe5X-c4WOiftdJAgUaIjrKktG2qRmcWBa5oQrMRWACg6pDYKEdfMjTF6eh5cQQuFc-33Wyc_XmLffySP4A9y_kjOT3KHmRg9M7uh_9pLGmeslu04hK7ehN0oQ_IlT56MntkXhn4Bq7VPWw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC6412241_44_57</pqid></control><display><type>book_chapter</type><title>Columns</title><source>O'Reilly Online Learning: Academic/Public Library Edition</source><source>Ebook Central Perpetual and DDA</source><creator>Jerath, Sukhvarsh</creator><contributor>Jerath, Sukhvarsh</contributor><creatorcontrib>Jerath, Sukhvarsh ; Jerath, Sukhvarsh</creatorcontrib><description>Vertical members whose ratio of length to lateral dimensions is large, and are carrying axial loads are called columns. Large columns fail by buckling. Difference between buckling and critical load is stated. Classical column theory proposed by Euler is used to find the critical load for axially loaded columns with different support conditions at the ends. The theory is based on equilibrium of the system in the displaced shape. The differential equations of equilibrium form an eigenvalue problem. The solution of the eigenvalue problem gives the critical load and the mode shapes. The columns are also analyzed by higher order governing differential equation. Continuous columns, columns with intermediate compressive force, non‐ prismatic columns, and columns supported on elastic supports are studied. Eccentrically loaded and geometrically imperfect columns are covered. Large deflection theory is used to study the post‐buckling behavior, and load versus deformation graphs are plotted. The concept of effective length of columns is given to find the critical compressive force. Rayleigh – Ritz and Galerkin methods are introduced to find critical load in columns by energy method. Elastic column behavior is considered in this chapter. There are nine practice problems and ten references at the end of the chapter.</description><identifier>ISBN: 9781119694526</identifier><identifier>ISBN: 1119694523</identifier><identifier>EISBN: 9781119694502</identifier><identifier>EISBN: 1119694507</identifier><identifier>EISBN: 9781119694489</identifier><identifier>EISBN: 1119694485</identifier><identifier>DOI: 10.1002/9781119694489.ch2</identifier><identifier>OCLC: 1227386030</identifier><identifier>LCCallNum: TA656.2 .J473 2021</identifier><language>eng</language><publisher>United States: John Wiley &amp; Sons, Incorporated</publisher><subject>Axial force ; Buckling ; Columns ; Eccentric force ; Eigenvalue ; Elastic supports ; Energy methods ; Imperfections ; Large deflection ; Stability</subject><ispartof>Structural Stability Theory and Practice, 2020, p.31-93</ispartof><rights>2021 John Wiley &amp; Sons Inc.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/6412241-l.jpg</thumbnail><link.rule.ids>777,778,782,791,27912</link.rule.ids></links><search><contributor>Jerath, Sukhvarsh</contributor><creatorcontrib>Jerath, Sukhvarsh</creatorcontrib><title>Columns</title><title>Structural Stability Theory and Practice</title><description>Vertical members whose ratio of length to lateral dimensions is large, and are carrying axial loads are called columns. Large columns fail by buckling. Difference between buckling and critical load is stated. Classical column theory proposed by Euler is used to find the critical load for axially loaded columns with different support conditions at the ends. The theory is based on equilibrium of the system in the displaced shape. The differential equations of equilibrium form an eigenvalue problem. The solution of the eigenvalue problem gives the critical load and the mode shapes. The columns are also analyzed by higher order governing differential equation. Continuous columns, columns with intermediate compressive force, non‐ prismatic columns, and columns supported on elastic supports are studied. Eccentrically loaded and geometrically imperfect columns are covered. Large deflection theory is used to study the post‐buckling behavior, and load versus deformation graphs are plotted. The concept of effective length of columns is given to find the critical compressive force. Rayleigh – Ritz and Galerkin methods are introduced to find critical load in columns by energy method. Elastic column behavior is considered in this chapter. There are nine practice problems and ten references at the end of the chapter.</description><subject>Axial force</subject><subject>Buckling</subject><subject>Columns</subject><subject>Eccentric force</subject><subject>Eigenvalue</subject><subject>Elastic supports</subject><subject>Energy methods</subject><subject>Imperfections</subject><subject>Large deflection</subject><subject>Stability</subject><isbn>9781119694526</isbn><isbn>1119694523</isbn><isbn>9781119694502</isbn><isbn>1119694507</isbn><isbn>9781119694489</isbn><isbn>1119694485</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2020</creationdate><recordtype>book_chapter</recordtype><recordid>eNpVj9tKw0AQhlfEY80D-BCpMzuT7O6lBE9Q8Kb3y24yoWpsajZFfHtTIkgvhmF--H7mU-oWYYkA-s4Zi4iudMzWLeuNPlHZf1aAPj26dXmurlFrQ7YEgkuVpfQOUxGDdcZcqYuq7_af23SjztrQJcn-9kKtHx_W1XO-en16qe5X-c4WOiftdJAgUaIjrKktG2qRmcWBa5oQrMRWACg6pDYKEdfMjTF6eh5cQQuFc-33Wyc_XmLffySP4A9y_kjOT3KHmRg9M7uh_9pLGmeslu04hK7ehN0oQ_IlT56MntkXhn4Bq7VPWw</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Jerath, Sukhvarsh</creator><general>John Wiley &amp; Sons, Incorporated</general><general>John Wiley &amp; Sons, Inc</general><scope>FFUUA</scope></search><sort><creationdate>2020</creationdate><title>Columns</title><author>Jerath, Sukhvarsh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p852-3292aeaebeb931c3f6d3f1444e909ddaa8ebfe003b913fbe334c44d7721000953</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Axial force</topic><topic>Buckling</topic><topic>Columns</topic><topic>Eccentric force</topic><topic>Eigenvalue</topic><topic>Elastic supports</topic><topic>Energy methods</topic><topic>Imperfections</topic><topic>Large deflection</topic><topic>Stability</topic><toplevel>online_resources</toplevel><creatorcontrib>Jerath, Sukhvarsh</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jerath, Sukhvarsh</au><au>Jerath, Sukhvarsh</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Columns</atitle><btitle>Structural Stability Theory and Practice</btitle><date>2020</date><risdate>2020</risdate><spage>31</spage><epage>93</epage><pages>31-93</pages><isbn>9781119694526</isbn><isbn>1119694523</isbn><eisbn>9781119694502</eisbn><eisbn>1119694507</eisbn><eisbn>9781119694489</eisbn><eisbn>1119694485</eisbn><abstract>Vertical members whose ratio of length to lateral dimensions is large, and are carrying axial loads are called columns. Large columns fail by buckling. Difference between buckling and critical load is stated. Classical column theory proposed by Euler is used to find the critical load for axially loaded columns with different support conditions at the ends. The theory is based on equilibrium of the system in the displaced shape. The differential equations of equilibrium form an eigenvalue problem. The solution of the eigenvalue problem gives the critical load and the mode shapes. The columns are also analyzed by higher order governing differential equation. Continuous columns, columns with intermediate compressive force, non‐ prismatic columns, and columns supported on elastic supports are studied. Eccentrically loaded and geometrically imperfect columns are covered. Large deflection theory is used to study the post‐buckling behavior, and load versus deformation graphs are plotted. The concept of effective length of columns is given to find the critical compressive force. Rayleigh – Ritz and Galerkin methods are introduced to find critical load in columns by energy method. Elastic column behavior is considered in this chapter. There are nine practice problems and ten references at the end of the chapter.</abstract><cop>United States</cop><pub>John Wiley &amp; Sons, Incorporated</pub><doi>10.1002/9781119694489.ch2</doi><oclcid>1227386030</oclcid><tpages>63</tpages></addata></record>
fulltext fulltext
identifier ISBN: 9781119694526
ispartof Structural Stability Theory and Practice, 2020, p.31-93
issn
language eng
recordid cdi_wiley_ebooks_10_1002_9781119694489_ch2_ch2
source O'Reilly Online Learning: Academic/Public Library Edition; Ebook Central Perpetual and DDA
subjects Axial force
Buckling
Columns
Eccentric force
Eigenvalue
Elastic supports
Energy methods
Imperfections
Large deflection
Stability
title Columns
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T00%3A07%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Columns&rft.btitle=Structural%20Stability%20Theory%20and%20Practice&rft.au=Jerath,%20Sukhvarsh&rft.date=2020&rft.spage=31&rft.epage=93&rft.pages=31-93&rft.isbn=9781119694526&rft.isbn_list=1119694523&rft_id=info:doi/10.1002/9781119694489.ch2&rft_dat=%3Cproquest_wiley%3EEBC6412241_44_57%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781119694502&rft.eisbn_list=1119694507&rft.eisbn_list=9781119694489&rft.eisbn_list=1119694485&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC6412241_44_57&rft_id=info:pmid/&rfr_iscdi=true