Phenomenological Creep Failure Models
This chapter presents a brief survey of the phenomenological aspects of creep, fracture, and failure properties. Phenomenologically, it is represented by a regime of constant strain rate, known as secondary creep rate or steady‐state creep rate for a constant stress and temperature. Mechanical tests...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 236 |
---|---|
container_issue | |
container_start_page | 215 |
container_title | |
container_volume | |
creator | Sinha, Shoma Sinha, Nirmal K |
description | This chapter presents a brief survey of the phenomenological aspects of creep, fracture, and failure properties. Phenomenologically, it is represented by a regime of constant strain rate, known as secondary creep rate or steady‐state creep rate for a constant stress and temperature. Mechanical tests for characterization of materials are essentially divided into two basic groups: creep tests and strength tests. Creep studies should fundamentally be made at constant stress rather than at constant load. For stresses of engineering importance, creep failure is invariably preceded by a tertiary stage attributable to the development of cavities and cracks, as well as necking. The fatigue behavior of high‐temperature alloys and the design‐related aspects of creep‐fatigue are very complex. One of the most common assumptions in strength testing for rate‐sensitive materials that include all crystalline solids at elevated temperatures is that constant stress creep tests can provide results comparable to those obtained from constant strain rate tests. |
doi_str_mv | 10.1002/9781119420507.ch6 |
format | Book Chapter |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_wiley_ebooks_10_1002_9781119420507_ch6_ch6</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC6889698_146_235</sourcerecordid><originalsourceid>FETCH-LOGICAL-p876-8654b022da645376bc6ff4380ecae1f9d2f27ada392205ecfd7fc80caac0aa053</originalsourceid><addsrcrecordid>eNpVj01LAzEQhiOiqLU_wFsvHlsn38lRilWhoofew2x2Yhdjd920iP_eLS2Ih5eBmXmGeRi74TDjAOLOW8c590qABjuLa3PCro4Npd0pG_8tKKfOh6HwTjovLVywcSlNBdoooZzgl-z2bU2b9nNIbt-biHky74m6yQKbvOtp8tLWlMs1O0uYC42PdcRWi4fV_Gm6fH18nt8vp52zZuqMVhUIUaNRWlpTRZOSkg4oIvHka5GExRqlF8PvFFNtU3QQESMggpYjxg9nv5tMP4Gqtv0ogUPYe4d_3mHw3mdg1IHp-vZrR2V7wCJttj3muMZuS30JxjlvvAtcmSCklr_XyFsW</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC6889698_146_235</pqid></control><display><type>book_chapter</type><title>Phenomenological Creep Failure Models</title><source>Ebook Central Perpetual and DDA</source><creator>Sinha, Shoma ; Sinha, Nirmal K</creator><contributor>Sinha, Shoma ; Sinha, Nirmal K</contributor><creatorcontrib>Sinha, Shoma ; Sinha, Nirmal K ; Sinha, Shoma ; Sinha, Nirmal K</creatorcontrib><description>This chapter presents a brief survey of the phenomenological aspects of creep, fracture, and failure properties. Phenomenologically, it is represented by a regime of constant strain rate, known as secondary creep rate or steady‐state creep rate for a constant stress and temperature. Mechanical tests for characterization of materials are essentially divided into two basic groups: creep tests and strength tests. Creep studies should fundamentally be made at constant stress rather than at constant load. For stresses of engineering importance, creep failure is invariably preceded by a tertiary stage attributable to the development of cavities and cracks, as well as necking. The fatigue behavior of high‐temperature alloys and the design‐related aspects of creep‐fatigue are very complex. One of the most common assumptions in strength testing for rate‐sensitive materials that include all crystalline solids at elevated temperatures is that constant stress creep tests can provide results comparable to those obtained from constant strain rate tests.</description><identifier>ISBN: 9781119420484</identifier><identifier>ISBN: 1119420482</identifier><identifier>EISBN: 1119420458</identifier><identifier>EISBN: 9781119420453</identifier><identifier>EISBN: 1119420504</identifier><identifier>EISBN: 9781119420507</identifier><identifier>DOI: 10.1002/9781119420507.ch6</identifier><identifier>OCLC: 1298389370</identifier><identifier>LCCallNum: TA418.24 .S564 2021</identifier><language>eng</language><publisher>United States: John Wiley & Sons, Incorporated</publisher><subject>constant stress ; creep failure ; creep studies ; fatigue behavior ; high‐temperature alloys ; rate‐sensitive materials ; steady‐state creep ; strength tests</subject><ispartof>Engineering Physics of High-Temperature Materials, 2022, p.215-236</ispartof><rights>2022 John Wiley & Sons, Inc.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/6889698-l.jpg</thumbnail><link.rule.ids>776,777,781,790,27906</link.rule.ids></links><search><contributor>Sinha, Shoma</contributor><contributor>Sinha, Nirmal K</contributor><creatorcontrib>Sinha, Shoma</creatorcontrib><creatorcontrib>Sinha, Nirmal K</creatorcontrib><title>Phenomenological Creep Failure Models</title><title>Engineering Physics of High-Temperature Materials</title><description>This chapter presents a brief survey of the phenomenological aspects of creep, fracture, and failure properties. Phenomenologically, it is represented by a regime of constant strain rate, known as secondary creep rate or steady‐state creep rate for a constant stress and temperature. Mechanical tests for characterization of materials are essentially divided into two basic groups: creep tests and strength tests. Creep studies should fundamentally be made at constant stress rather than at constant load. For stresses of engineering importance, creep failure is invariably preceded by a tertiary stage attributable to the development of cavities and cracks, as well as necking. The fatigue behavior of high‐temperature alloys and the design‐related aspects of creep‐fatigue are very complex. One of the most common assumptions in strength testing for rate‐sensitive materials that include all crystalline solids at elevated temperatures is that constant stress creep tests can provide results comparable to those obtained from constant strain rate tests.</description><subject>constant stress</subject><subject>creep failure</subject><subject>creep studies</subject><subject>fatigue behavior</subject><subject>high‐temperature alloys</subject><subject>rate‐sensitive materials</subject><subject>steady‐state creep</subject><subject>strength tests</subject><isbn>9781119420484</isbn><isbn>1119420482</isbn><isbn>1119420458</isbn><isbn>9781119420453</isbn><isbn>1119420504</isbn><isbn>9781119420507</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2022</creationdate><recordtype>book_chapter</recordtype><recordid>eNpVj01LAzEQhiOiqLU_wFsvHlsn38lRilWhoofew2x2Yhdjd920iP_eLS2Ih5eBmXmGeRi74TDjAOLOW8c590qABjuLa3PCro4Npd0pG_8tKKfOh6HwTjovLVywcSlNBdoooZzgl-z2bU2b9nNIbt-biHky74m6yQKbvOtp8tLWlMs1O0uYC42PdcRWi4fV_Gm6fH18nt8vp52zZuqMVhUIUaNRWlpTRZOSkg4oIvHka5GExRqlF8PvFFNtU3QQESMggpYjxg9nv5tMP4Gqtv0ogUPYe4d_3mHw3mdg1IHp-vZrR2V7wCJttj3muMZuS30JxjlvvAtcmSCklr_XyFsW</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Sinha, Shoma</creator><creator>Sinha, Nirmal K</creator><general>John Wiley & Sons, Incorporated</general><general>John Wiley & Sons, Inc</general><scope>FFUUA</scope></search><sort><creationdate>2022</creationdate><title>Phenomenological Creep Failure Models</title><author>Sinha, Shoma ; Sinha, Nirmal K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p876-8654b022da645376bc6ff4380ecae1f9d2f27ada392205ecfd7fc80caac0aa053</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2022</creationdate><topic>constant stress</topic><topic>creep failure</topic><topic>creep studies</topic><topic>fatigue behavior</topic><topic>high‐temperature alloys</topic><topic>rate‐sensitive materials</topic><topic>steady‐state creep</topic><topic>strength tests</topic><toplevel>online_resources</toplevel><creatorcontrib>Sinha, Shoma</creatorcontrib><creatorcontrib>Sinha, Nirmal K</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sinha, Shoma</au><au>Sinha, Nirmal K</au><au>Sinha, Shoma</au><au>Sinha, Nirmal K</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Phenomenological Creep Failure Models</atitle><btitle>Engineering Physics of High-Temperature Materials</btitle><date>2022</date><risdate>2022</risdate><spage>215</spage><epage>236</epage><pages>215-236</pages><isbn>9781119420484</isbn><isbn>1119420482</isbn><eisbn>1119420458</eisbn><eisbn>9781119420453</eisbn><eisbn>1119420504</eisbn><eisbn>9781119420507</eisbn><abstract>This chapter presents a brief survey of the phenomenological aspects of creep, fracture, and failure properties. Phenomenologically, it is represented by a regime of constant strain rate, known as secondary creep rate or steady‐state creep rate for a constant stress and temperature. Mechanical tests for characterization of materials are essentially divided into two basic groups: creep tests and strength tests. Creep studies should fundamentally be made at constant stress rather than at constant load. For stresses of engineering importance, creep failure is invariably preceded by a tertiary stage attributable to the development of cavities and cracks, as well as necking. The fatigue behavior of high‐temperature alloys and the design‐related aspects of creep‐fatigue are very complex. One of the most common assumptions in strength testing for rate‐sensitive materials that include all crystalline solids at elevated temperatures is that constant stress creep tests can provide results comparable to those obtained from constant strain rate tests.</abstract><cop>United States</cop><pub>John Wiley & Sons, Incorporated</pub><doi>10.1002/9781119420507.ch6</doi><oclcid>1298389370</oclcid><tpages>22</tpages></addata></record> |
fulltext | fulltext |
identifier | ISBN: 9781119420484 |
ispartof | Engineering Physics of High-Temperature Materials, 2022, p.215-236 |
issn | |
language | eng |
recordid | cdi_wiley_ebooks_10_1002_9781119420507_ch6_ch6 |
source | Ebook Central Perpetual and DDA |
subjects | constant stress creep failure creep studies fatigue behavior high‐temperature alloys rate‐sensitive materials steady‐state creep strength tests |
title | Phenomenological Creep Failure Models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T15%3A10%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Phenomenological%20Creep%20Failure%20Models&rft.btitle=Engineering%20Physics%20of%20High-Temperature%20Materials&rft.au=Sinha,%20Shoma&rft.date=2022&rft.spage=215&rft.epage=236&rft.pages=215-236&rft.isbn=9781119420484&rft.isbn_list=1119420482&rft_id=info:doi/10.1002/9781119420507.ch6&rft_dat=%3Cproquest_wiley%3EEBC6889698_146_235%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&rft.eisbn=1119420458&rft.eisbn_list=9781119420453&rft.eisbn_list=1119420504&rft.eisbn_list=9781119420507&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC6889698_146_235&rft_id=info:pmid/&rfr_iscdi=true |