Phenomenological Creep Failure Models

This chapter presents a brief survey of the phenomenological aspects of creep, fracture, and failure properties. Phenomenologically, it is represented by a regime of constant strain rate, known as secondary creep rate or steady‐state creep rate for a constant stress and temperature. Mechanical tests...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Sinha, Shoma, Sinha, Nirmal K
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 236
container_issue
container_start_page 215
container_title
container_volume
creator Sinha, Shoma
Sinha, Nirmal K
description This chapter presents a brief survey of the phenomenological aspects of creep, fracture, and failure properties. Phenomenologically, it is represented by a regime of constant strain rate, known as secondary creep rate or steady‐state creep rate for a constant stress and temperature. Mechanical tests for characterization of materials are essentially divided into two basic groups: creep tests and strength tests. Creep studies should fundamentally be made at constant stress rather than at constant load. For stresses of engineering importance, creep failure is invariably preceded by a tertiary stage attributable to the development of cavities and cracks, as well as necking. The fatigue behavior of high‐temperature alloys and the design‐related aspects of creep‐fatigue are very complex. One of the most common assumptions in strength testing for rate‐sensitive materials that include all crystalline solids at elevated temperatures is that constant stress creep tests can provide results comparable to those obtained from constant strain rate tests.
doi_str_mv 10.1002/9781119420507.ch6
format Book Chapter
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_wiley_ebooks_10_1002_9781119420507_ch6_ch6</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC6889698_146_235</sourcerecordid><originalsourceid>FETCH-LOGICAL-p876-8654b022da645376bc6ff4380ecae1f9d2f27ada392205ecfd7fc80caac0aa053</originalsourceid><addsrcrecordid>eNpVj01LAzEQhiOiqLU_wFsvHlsn38lRilWhoofew2x2Yhdjd920iP_eLS2Ih5eBmXmGeRi74TDjAOLOW8c590qABjuLa3PCro4Npd0pG_8tKKfOh6HwTjovLVywcSlNBdoooZzgl-z2bU2b9nNIbt-biHky74m6yQKbvOtp8tLWlMs1O0uYC42PdcRWi4fV_Gm6fH18nt8vp52zZuqMVhUIUaNRWlpTRZOSkg4oIvHka5GExRqlF8PvFFNtU3QQESMggpYjxg9nv5tMP4Gqtv0ogUPYe4d_3mHw3mdg1IHp-vZrR2V7wCJttj3muMZuS30JxjlvvAtcmSCklr_XyFsW</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC6889698_146_235</pqid></control><display><type>book_chapter</type><title>Phenomenological Creep Failure Models</title><source>Ebook Central Perpetual and DDA</source><creator>Sinha, Shoma ; Sinha, Nirmal K</creator><contributor>Sinha, Shoma ; Sinha, Nirmal K</contributor><creatorcontrib>Sinha, Shoma ; Sinha, Nirmal K ; Sinha, Shoma ; Sinha, Nirmal K</creatorcontrib><description>This chapter presents a brief survey of the phenomenological aspects of creep, fracture, and failure properties. Phenomenologically, it is represented by a regime of constant strain rate, known as secondary creep rate or steady‐state creep rate for a constant stress and temperature. Mechanical tests for characterization of materials are essentially divided into two basic groups: creep tests and strength tests. Creep studies should fundamentally be made at constant stress rather than at constant load. For stresses of engineering importance, creep failure is invariably preceded by a tertiary stage attributable to the development of cavities and cracks, as well as necking. The fatigue behavior of high‐temperature alloys and the design‐related aspects of creep‐fatigue are very complex. One of the most common assumptions in strength testing for rate‐sensitive materials that include all crystalline solids at elevated temperatures is that constant stress creep tests can provide results comparable to those obtained from constant strain rate tests.</description><identifier>ISBN: 9781119420484</identifier><identifier>ISBN: 1119420482</identifier><identifier>EISBN: 1119420458</identifier><identifier>EISBN: 9781119420453</identifier><identifier>EISBN: 1119420504</identifier><identifier>EISBN: 9781119420507</identifier><identifier>DOI: 10.1002/9781119420507.ch6</identifier><identifier>OCLC: 1298389370</identifier><identifier>LCCallNum: TA418.24 .S564 2021</identifier><language>eng</language><publisher>United States: John Wiley &amp; Sons, Incorporated</publisher><subject>constant stress ; creep failure ; creep studies ; fatigue behavior ; high‐temperature alloys ; rate‐sensitive materials ; steady‐state creep ; strength tests</subject><ispartof>Engineering Physics of High-Temperature Materials, 2022, p.215-236</ispartof><rights>2022 John Wiley &amp; Sons, Inc.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/6889698-l.jpg</thumbnail><link.rule.ids>776,777,781,790,27906</link.rule.ids></links><search><contributor>Sinha, Shoma</contributor><contributor>Sinha, Nirmal K</contributor><creatorcontrib>Sinha, Shoma</creatorcontrib><creatorcontrib>Sinha, Nirmal K</creatorcontrib><title>Phenomenological Creep Failure Models</title><title>Engineering Physics of High-Temperature Materials</title><description>This chapter presents a brief survey of the phenomenological aspects of creep, fracture, and failure properties. Phenomenologically, it is represented by a regime of constant strain rate, known as secondary creep rate or steady‐state creep rate for a constant stress and temperature. Mechanical tests for characterization of materials are essentially divided into two basic groups: creep tests and strength tests. Creep studies should fundamentally be made at constant stress rather than at constant load. For stresses of engineering importance, creep failure is invariably preceded by a tertiary stage attributable to the development of cavities and cracks, as well as necking. The fatigue behavior of high‐temperature alloys and the design‐related aspects of creep‐fatigue are very complex. One of the most common assumptions in strength testing for rate‐sensitive materials that include all crystalline solids at elevated temperatures is that constant stress creep tests can provide results comparable to those obtained from constant strain rate tests.</description><subject>constant stress</subject><subject>creep failure</subject><subject>creep studies</subject><subject>fatigue behavior</subject><subject>high‐temperature alloys</subject><subject>rate‐sensitive materials</subject><subject>steady‐state creep</subject><subject>strength tests</subject><isbn>9781119420484</isbn><isbn>1119420482</isbn><isbn>1119420458</isbn><isbn>9781119420453</isbn><isbn>1119420504</isbn><isbn>9781119420507</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2022</creationdate><recordtype>book_chapter</recordtype><recordid>eNpVj01LAzEQhiOiqLU_wFsvHlsn38lRilWhoofew2x2Yhdjd920iP_eLS2Ih5eBmXmGeRi74TDjAOLOW8c590qABjuLa3PCro4Npd0pG_8tKKfOh6HwTjovLVywcSlNBdoooZzgl-z2bU2b9nNIbt-biHky74m6yQKbvOtp8tLWlMs1O0uYC42PdcRWi4fV_Gm6fH18nt8vp52zZuqMVhUIUaNRWlpTRZOSkg4oIvHka5GExRqlF8PvFFNtU3QQESMggpYjxg9nv5tMP4Gqtv0ogUPYe4d_3mHw3mdg1IHp-vZrR2V7wCJttj3muMZuS30JxjlvvAtcmSCklr_XyFsW</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Sinha, Shoma</creator><creator>Sinha, Nirmal K</creator><general>John Wiley &amp; Sons, Incorporated</general><general>John Wiley &amp; Sons, Inc</general><scope>FFUUA</scope></search><sort><creationdate>2022</creationdate><title>Phenomenological Creep Failure Models</title><author>Sinha, Shoma ; Sinha, Nirmal K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p876-8654b022da645376bc6ff4380ecae1f9d2f27ada392205ecfd7fc80caac0aa053</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2022</creationdate><topic>constant stress</topic><topic>creep failure</topic><topic>creep studies</topic><topic>fatigue behavior</topic><topic>high‐temperature alloys</topic><topic>rate‐sensitive materials</topic><topic>steady‐state creep</topic><topic>strength tests</topic><toplevel>online_resources</toplevel><creatorcontrib>Sinha, Shoma</creatorcontrib><creatorcontrib>Sinha, Nirmal K</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sinha, Shoma</au><au>Sinha, Nirmal K</au><au>Sinha, Shoma</au><au>Sinha, Nirmal K</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Phenomenological Creep Failure Models</atitle><btitle>Engineering Physics of High-Temperature Materials</btitle><date>2022</date><risdate>2022</risdate><spage>215</spage><epage>236</epage><pages>215-236</pages><isbn>9781119420484</isbn><isbn>1119420482</isbn><eisbn>1119420458</eisbn><eisbn>9781119420453</eisbn><eisbn>1119420504</eisbn><eisbn>9781119420507</eisbn><abstract>This chapter presents a brief survey of the phenomenological aspects of creep, fracture, and failure properties. Phenomenologically, it is represented by a regime of constant strain rate, known as secondary creep rate or steady‐state creep rate for a constant stress and temperature. Mechanical tests for characterization of materials are essentially divided into two basic groups: creep tests and strength tests. Creep studies should fundamentally be made at constant stress rather than at constant load. For stresses of engineering importance, creep failure is invariably preceded by a tertiary stage attributable to the development of cavities and cracks, as well as necking. The fatigue behavior of high‐temperature alloys and the design‐related aspects of creep‐fatigue are very complex. One of the most common assumptions in strength testing for rate‐sensitive materials that include all crystalline solids at elevated temperatures is that constant stress creep tests can provide results comparable to those obtained from constant strain rate tests.</abstract><cop>United States</cop><pub>John Wiley &amp; Sons, Incorporated</pub><doi>10.1002/9781119420507.ch6</doi><oclcid>1298389370</oclcid><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISBN: 9781119420484
ispartof Engineering Physics of High-Temperature Materials, 2022, p.215-236
issn
language eng
recordid cdi_wiley_ebooks_10_1002_9781119420507_ch6_ch6
source Ebook Central Perpetual and DDA
subjects constant stress
creep failure
creep studies
fatigue behavior
high‐temperature alloys
rate‐sensitive materials
steady‐state creep
strength tests
title Phenomenological Creep Failure Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T15%3A10%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Phenomenological%20Creep%20Failure%20Models&rft.btitle=Engineering%20Physics%20of%20High-Temperature%20Materials&rft.au=Sinha,%20Shoma&rft.date=2022&rft.spage=215&rft.epage=236&rft.pages=215-236&rft.isbn=9781119420484&rft.isbn_list=1119420482&rft_id=info:doi/10.1002/9781119420507.ch6&rft_dat=%3Cproquest_wiley%3EEBC6889698_146_235%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&rft.eisbn=1119420458&rft.eisbn_list=9781119420453&rft.eisbn_list=1119420504&rft.eisbn_list=9781119420507&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC6889698_146_235&rft_id=info:pmid/&rfr_iscdi=true