Data Science, Random Numbers, and Statistics

Data science is a relatively new and evolving interdisciplinary field that sits at the intersection between computer science, software engineering, and statistics. Analysis of data has traditionally been performed by statisticians. An ideal data scientist would be equally well versed in statistics a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Mongan, John, Giguère, Eric, Kindler, Noah Suojanen
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 258
container_issue
container_start_page 239
container_title
container_volume
creator Mongan, John
Giguère, Eric
Kindler, Noah Suojanen
description Data science is a relatively new and evolving interdisciplinary field that sits at the intersection between computer science, software engineering, and statistics. Analysis of data has traditionally been performed by statisticians. An ideal data scientist would be equally well versed in statistics and programming. Machine learning techniques develop intelligence—the ability to make classifications or predictions—based on learning directly from data rather than being explicitly coded by humans. It is deeply rooted in statistics. Random sampling is at the core of many machine learning algorithms. Games and simulations often lean heavily on random numbers, including for generating variety in scenarios and for the artificial intelligence procedures for non‐player characters. In interviews, random number generator problems combine mathematical concepts like statistics with computer code, allowing for evaluation of programmer's analytical skills as well as their coding ability.
doi_str_mv 10.1002/9781119418504.ch15
format Book Chapter
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_wiley_ebooks_10_1002_9781119418504_ch15_ch15</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC5333089_220_273</sourcerecordid><originalsourceid>FETCH-LOGICAL-p128f-87d50b57fd22b6dc4ada5dbf9e6673aed2a0b456da650e0193280fd864b8ee3c3</originalsourceid><addsrcrecordid>eNptkNtKA0EMhkdEUWtfwKt9gLZmzrOXUo9QFKxeD3PI0tW2u3ZGRJ_erStIQQIJf8iXi4-QMwoTCsDOS20opaWgRoKYhAWVe2T4txSl2d_JWhySEwp8W0yaIzJM6QW6T8C0VnBMRpcuu2IealwHHBWPbh2bVXH_vvK4SaOii8U8u1ynXId0Sg4qt0w4_J0D8nx99TS9Hc8ebu6mF7NxS5mpxkZHCV7qKjLmVQzCRSejr0pUSnOHkTnwQqrolAQEWnJmoIpGCW8QeeADwvu_H_USPy36pnlNloLdOrA7DuzWwU_rqMk_1O71V932RBurDhA90G6at3dMuWcCrvPGLcPCtbmTYCXnHExpGQPLNOffStdtAg</addsrcrecordid><sourcetype>Enrichment Source</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC5333089_220_273</pqid></control><display><type>book_chapter</type><title>Data Science, Random Numbers, and Statistics</title><source>O'Reilly Online Learning: Academic/Public Library Edition</source><creator>Mongan, John ; Giguère, Eric ; Kindler, Noah Suojanen</creator><contributor>Kindler, Noah ; Giguère, Eric ; Mongan, John</contributor><creatorcontrib>Mongan, John ; Giguère, Eric ; Kindler, Noah Suojanen ; Kindler, Noah ; Giguère, Eric ; Mongan, John</creatorcontrib><description>Data science is a relatively new and evolving interdisciplinary field that sits at the intersection between computer science, software engineering, and statistics. Analysis of data has traditionally been performed by statisticians. An ideal data scientist would be equally well versed in statistics and programming. Machine learning techniques develop intelligence—the ability to make classifications or predictions—based on learning directly from data rather than being explicitly coded by humans. It is deeply rooted in statistics. Random sampling is at the core of many machine learning algorithms. Games and simulations often lean heavily on random numbers, including for generating variety in scenarios and for the artificial intelligence procedures for non‐player characters. In interviews, random number generator problems combine mathematical concepts like statistics with computer code, allowing for evaluation of programmer's analytical skills as well as their coding ability.</description><identifier>ISBN: 9781119418474</identifier><identifier>ISBN: 111941847X</identifier><identifier>EISBN: 9781119418498</identifier><identifier>EISBN: 1119418496</identifier><identifier>EISBN: 111941850X</identifier><identifier>EISBN: 9781119418504</identifier><identifier>DOI: 10.1002/9781119418504.ch15</identifier><identifier>OCLC: 1030303258</identifier><identifier>LCCallNum: HF5549.5.I6 .M664 2018</identifier><language>eng</language><publisher>United States: John Wiley &amp; Sons, Incorporated</publisher><subject>analytical skills ; artificial intelligence ; coding ability ; data science ; machine learning ; random number generator ; statistical skills</subject><ispartof>Programming Interviews Exposed, 2018, p.239-258</ispartof><rights>2018 John Wiley &amp; Sons, Inc., Indianapolis, Indiana.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/5333089-l.jpg</thumbnail><link.rule.ids>779,780,784,793,27924</link.rule.ids></links><search><contributor>Kindler, Noah</contributor><contributor>Giguère, Eric</contributor><contributor>Mongan, John</contributor><creatorcontrib>Mongan, John</creatorcontrib><creatorcontrib>Giguère, Eric</creatorcontrib><creatorcontrib>Kindler, Noah Suojanen</creatorcontrib><title>Data Science, Random Numbers, and Statistics</title><title>Programming Interviews Exposed</title><description>Data science is a relatively new and evolving interdisciplinary field that sits at the intersection between computer science, software engineering, and statistics. Analysis of data has traditionally been performed by statisticians. An ideal data scientist would be equally well versed in statistics and programming. Machine learning techniques develop intelligence—the ability to make classifications or predictions—based on learning directly from data rather than being explicitly coded by humans. It is deeply rooted in statistics. Random sampling is at the core of many machine learning algorithms. Games and simulations often lean heavily on random numbers, including for generating variety in scenarios and for the artificial intelligence procedures for non‐player characters. In interviews, random number generator problems combine mathematical concepts like statistics with computer code, allowing for evaluation of programmer's analytical skills as well as their coding ability.</description><subject>analytical skills</subject><subject>artificial intelligence</subject><subject>coding ability</subject><subject>data science</subject><subject>machine learning</subject><subject>random number generator</subject><subject>statistical skills</subject><isbn>9781119418474</isbn><isbn>111941847X</isbn><isbn>9781119418498</isbn><isbn>1119418496</isbn><isbn>111941850X</isbn><isbn>9781119418504</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2018</creationdate><recordtype>book_chapter</recordtype><recordid>eNptkNtKA0EMhkdEUWtfwKt9gLZmzrOXUo9QFKxeD3PI0tW2u3ZGRJ_erStIQQIJf8iXi4-QMwoTCsDOS20opaWgRoKYhAWVe2T4txSl2d_JWhySEwp8W0yaIzJM6QW6T8C0VnBMRpcuu2IealwHHBWPbh2bVXH_vvK4SaOii8U8u1ynXId0Sg4qt0w4_J0D8nx99TS9Hc8ebu6mF7NxS5mpxkZHCV7qKjLmVQzCRSejr0pUSnOHkTnwQqrolAQEWnJmoIpGCW8QeeADwvu_H_USPy36pnlNloLdOrA7DuzWwU_rqMk_1O71V932RBurDhA90G6at3dMuWcCrvPGLcPCtbmTYCXnHExpGQPLNOffStdtAg</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Mongan, John</creator><creator>Giguère, Eric</creator><creator>Kindler, Noah Suojanen</creator><general>John Wiley &amp; Sons, Incorporated</general><general>John Wiley &amp; Sons, Inc</general><scope>FFUUA</scope></search><sort><creationdate>2018</creationdate><title>Data Science, Random Numbers, and Statistics</title><author>Mongan, John ; Giguère, Eric ; Kindler, Noah Suojanen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p128f-87d50b57fd22b6dc4ada5dbf9e6673aed2a0b456da650e0193280fd864b8ee3c3</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2018</creationdate><topic>analytical skills</topic><topic>artificial intelligence</topic><topic>coding ability</topic><topic>data science</topic><topic>machine learning</topic><topic>random number generator</topic><topic>statistical skills</topic><toplevel>online_resources</toplevel><creatorcontrib>Mongan, John</creatorcontrib><creatorcontrib>Giguère, Eric</creatorcontrib><creatorcontrib>Kindler, Noah Suojanen</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mongan, John</au><au>Giguère, Eric</au><au>Kindler, Noah Suojanen</au><au>Kindler, Noah</au><au>Giguère, Eric</au><au>Mongan, John</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Data Science, Random Numbers, and Statistics</atitle><btitle>Programming Interviews Exposed</btitle><date>2018</date><risdate>2018</risdate><spage>239</spage><epage>258</epage><pages>239-258</pages><isbn>9781119418474</isbn><isbn>111941847X</isbn><eisbn>9781119418498</eisbn><eisbn>1119418496</eisbn><eisbn>111941850X</eisbn><eisbn>9781119418504</eisbn><abstract>Data science is a relatively new and evolving interdisciplinary field that sits at the intersection between computer science, software engineering, and statistics. Analysis of data has traditionally been performed by statisticians. An ideal data scientist would be equally well versed in statistics and programming. Machine learning techniques develop intelligence—the ability to make classifications or predictions—based on learning directly from data rather than being explicitly coded by humans. It is deeply rooted in statistics. Random sampling is at the core of many machine learning algorithms. Games and simulations often lean heavily on random numbers, including for generating variety in scenarios and for the artificial intelligence procedures for non‐player characters. In interviews, random number generator problems combine mathematical concepts like statistics with computer code, allowing for evaluation of programmer's analytical skills as well as their coding ability.</abstract><cop>United States</cop><pub>John Wiley &amp; Sons, Incorporated</pub><doi>10.1002/9781119418504.ch15</doi><oclcid>1030303258</oclcid><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISBN: 9781119418474
ispartof Programming Interviews Exposed, 2018, p.239-258
issn
language eng
recordid cdi_wiley_ebooks_10_1002_9781119418504_ch15_ch15
source O'Reilly Online Learning: Academic/Public Library Edition
subjects analytical skills
artificial intelligence
coding ability
data science
machine learning
random number generator
statistical skills
title Data Science, Random Numbers, and Statistics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T13%3A56%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Data%20Science,%20Random%20Numbers,%20and%20Statistics&rft.btitle=Programming%20Interviews%20Exposed&rft.au=Mongan,%20John&rft.date=2018&rft.spage=239&rft.epage=258&rft.pages=239-258&rft.isbn=9781119418474&rft.isbn_list=111941847X&rft_id=info:doi/10.1002/9781119418504.ch15&rft_dat=%3Cproquest_wiley%3EEBC5333089_220_273%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781119418498&rft.eisbn_list=1119418496&rft.eisbn_list=111941850X&rft.eisbn_list=9781119418504&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC5333089_220_273&rft_id=info:pmid/&rfr_iscdi=true