Detection of the Number of Clusters through Non‐Parametric Clustering Algorithms
This chapter contains sections titled: Introduction New hierarchical pole‐based clustering algorithm Evaluation Datasets Summary
Gespeichert in:
Format: | Buchkapitel |
---|---|
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 197 |
---|---|
container_issue | |
container_start_page | 183 |
container_title | |
container_volume | |
description | This chapter contains sections titled:
Introduction
New hierarchical pole‐based clustering algorithm
Evaluation
Datasets
Summary |
doi_str_mv | 10.1002/9781118557693.ch5 |
format | Book Chapter |
fullrecord | <record><control><sourceid>wiley</sourceid><recordid>TN_cdi_wiley_ebooks_10_1002_9781118557693_ch5_ch5</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10.1002/9781118557693.ch5</sourcerecordid><originalsourceid>FETCH-wiley_ebooks_10_1002_9781118557693_ch5_ch53</originalsourceid><addsrcrecordid>eNpjYJA0NNAzNDAw0rc0tzA0NLQwNTU3szTWS84wZWTggguYMwM5FiYWRoZGBsYWHAy8xcVZBkBgYWFsYWTByRDkklqSmlySmZ-nkJ-mUJKRquBXmpuUWgTiOeeUFpekFhUDhYvyS9MzFPzy8x41TAhILErMTS0pykyGqcjMS1dwzEnPL8osycgt5mFgTUvMKU7lhdLcDIZuriHOHrrlmTmplfGpSfn52cXxhgbxINfHo7g-Huh6EDbmZtDFogdVbVVmAVh9QUqaMTl2AADHZV3P</addsrcrecordid><sourcetype>Enrichment Source</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype></control><display><type>book_chapter</type><title>Detection of the Number of Clusters through Non‐Parametric Clustering Algorithms</title><source>O'Reilly Online Learning: Academic/Public Library Edition</source><contributor>Albalate, Amparo ; Minker, Wolfgang</contributor><creatorcontrib>Albalate, Amparo ; Minker, Wolfgang</creatorcontrib><description>This chapter contains sections titled:
Introduction
New hierarchical pole‐based clustering algorithm
Evaluation
Datasets
Summary</description><identifier>ISBN: 1848212038</identifier><identifier>ISBN: 9781848212039</identifier><identifier>EISBN: 1118557697</identifier><identifier>EISBN: 9781118557693</identifier><identifier>DOI: 10.1002/9781118557693.ch5</identifier><language>eng</language><publisher>Hoboken, NJ, USA: John Wiley & Sons, Inc</publisher><subject>cluster evaluation metrics ; cluster numbers through non‐parametric ; new hierarchical pole‐based, algorithm ; PoBOC/HPoBC complexity, and pole No./size ; unsupervised, algorithms for optimal clusters</subject><ispartof>Semi‐Supervised and Unsupervised Machine Learning, 2013, p.183-197</ispartof><rights>Copyright © ISTE Ltd 2011</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>779,780,784,793,24781,27925</link.rule.ids></links><search><contributor>Albalate, Amparo</contributor><contributor>Minker, Wolfgang</contributor><title>Detection of the Number of Clusters through Non‐Parametric Clustering Algorithms</title><title>Semi‐Supervised and Unsupervised Machine Learning</title><description>This chapter contains sections titled:
Introduction
New hierarchical pole‐based clustering algorithm
Evaluation
Datasets
Summary</description><subject>cluster evaluation metrics</subject><subject>cluster numbers through non‐parametric</subject><subject>new hierarchical pole‐based, algorithm</subject><subject>PoBOC/HPoBC complexity, and pole No./size</subject><subject>unsupervised, algorithms for optimal clusters</subject><isbn>1848212038</isbn><isbn>9781848212039</isbn><isbn>1118557697</isbn><isbn>9781118557693</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2013</creationdate><recordtype>book_chapter</recordtype><sourceid/><recordid>eNpjYJA0NNAzNDAw0rc0tzA0NLQwNTU3szTWS84wZWTggguYMwM5FiYWRoZGBsYWHAy8xcVZBkBgYWFsYWTByRDkklqSmlySmZ-nkJ-mUJKRquBXmpuUWgTiOeeUFpekFhUDhYvyS9MzFPzy8x41TAhILErMTS0pykyGqcjMS1dwzEnPL8osycgt5mFgTUvMKU7lhdLcDIZuriHOHrrlmTmplfGpSfn52cXxhgbxINfHo7g-Huh6EDbmZtDFogdVbVVmAVh9QUqaMTl2AADHZV3P</recordid><startdate>20130228</startdate><enddate>20130228</enddate><general>John Wiley & Sons, Inc</general><scope/></search><sort><creationdate>20130228</creationdate><title>Detection of the Number of Clusters through Non‐Parametric Clustering Algorithms</title></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-wiley_ebooks_10_1002_9781118557693_ch5_ch53</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2013</creationdate><topic>cluster evaluation metrics</topic><topic>cluster numbers through non‐parametric</topic><topic>new hierarchical pole‐based, algorithm</topic><topic>PoBOC/HPoBC complexity, and pole No./size</topic><topic>unsupervised, algorithms for optimal clusters</topic><toplevel>online_resources</toplevel></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Albalate, Amparo</au><au>Minker, Wolfgang</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Detection of the Number of Clusters through Non‐Parametric Clustering Algorithms</atitle><btitle>Semi‐Supervised and Unsupervised Machine Learning</btitle><date>2013-02-28</date><risdate>2013</risdate><spage>183</spage><epage>197</epage><pages>183-197</pages><isbn>1848212038</isbn><isbn>9781848212039</isbn><eisbn>1118557697</eisbn><eisbn>9781118557693</eisbn><abstract>This chapter contains sections titled:
Introduction
New hierarchical pole‐based clustering algorithm
Evaluation
Datasets
Summary</abstract><cop>Hoboken, NJ, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/9781118557693.ch5</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISBN: 1848212038 |
ispartof | Semi‐Supervised and Unsupervised Machine Learning, 2013, p.183-197 |
issn | |
language | eng |
recordid | cdi_wiley_ebooks_10_1002_9781118557693_ch5_ch5 |
source | O'Reilly Online Learning: Academic/Public Library Edition |
subjects | cluster evaluation metrics cluster numbers through non‐parametric new hierarchical pole‐based, algorithm PoBOC/HPoBC complexity, and pole No./size unsupervised, algorithms for optimal clusters |
title | Detection of the Number of Clusters through Non‐Parametric Clustering Algorithms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T20%3A18%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Detection%20of%20the%20Number%20of%20Clusters%20through%20Non%E2%80%90Parametric%20Clustering%20Algorithms&rft.btitle=Semi%E2%80%90Supervised%20and%20Unsupervised%20Machine%20Learning&rft.au=Albalate,%20Amparo&rft.date=2013-02-28&rft.spage=183&rft.epage=197&rft.pages=183-197&rft.isbn=1848212038&rft.isbn_list=9781848212039&rft_id=info:doi/10.1002/9781118557693.ch5&rft_dat=%3Cwiley%3E10.1002/9781118557693.ch5%3C/wiley%3E%3Curl%3E%3C/url%3E&rft.eisbn=1118557697&rft.eisbn_list=9781118557693&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |