Quadratic Time‐Frequency Analysis III: The Affine Class and Other Covariant Classes

Affine time‐frequency distributions appeared towards the middle of the 1980s with the emergence of wavelet theory. The affine class is built upon the principle of covariance of the affine group, i.e., contractions‐dilations and translations in time. This group provides an interesting alternative to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Gonçalvés, Paulo, Ovarlez, Jean‐Philippe, Baraniuk, Richard
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 226
container_issue
container_start_page 193
container_title
container_volume
creator Gonçalvés, Paulo
Ovarlez, Jean‐Philippe
Baraniuk, Richard
description Affine time‐frequency distributions appeared towards the middle of the 1980s with the emergence of wavelet theory. The affine class is built upon the principle of covariance of the affine group, i.e., contractions‐dilations and translations in time. This group provides an interesting alternative to the group of translations in time and in frequency, which forms the basis for the conventional time‐frequency distributions of Cohen's class. More precisely, as the Doppler effect on “broadband” signals is expressed in terms of contractions‐dilations, it is for the analysis of this category of signals that the affine class is particularly destined. The objective of this chapter is to present the various approaches for constructing the affine class and the associated tools devised over the past years. We will demonstrate how the latter supported the introduction of new mathematical concepts in signal processing — group theory, operator theory — as well as of new classes of covariant time‐frequency distributions.
doi_str_mv 10.1002/9780470611203.ch7
format Book Chapter
fullrecord <record><control><sourceid>wiley</sourceid><recordid>TN_cdi_wiley_ebooks_10_1002_9780470611203_ch7_ch7</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10.1002/9780470611203.ch7</sourcerecordid><originalsourceid>FETCH-LOGICAL-s1127-4ef3e148975323155d5f80ca2d9e6e48b043663ede3f48225a19b7e88067bc13</originalsourceid><addsrcrecordid>eNpVkE1KxEAQhVtEUMYcwF1fIGN3V__FXQiOBgYGIa5DJ6mQaEwwnVGy8wie0ZOYcdxMwaN4r6Co-gi54WzNGRO3kbFMGqY5FwzWZWPOSHCSnf95bqUVnAGISxJ4_8KWAiUt6Cvy_LR31eimtqRZ-4Y_X9-bEd_32JczjXvXzb71NE3TO5o1SOO6bnukSee8p66v6G5qcKTJ8OHG1vXTcYL-mlzUrvMY_PcVyTb3WfIYbncPaRJvQ7-cZ0KJNSCXNjIKBHClKlVbVjpRRahR2oJJ0BqwQqiXF4RyPCoMWsu0KUoOK8KPaz_bDucci2F49Tln-YFOfkIiX-gcBL-U_VdR</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype></control><display><type>book_chapter</type><title>Quadratic Time‐Frequency Analysis III: The Affine Class and Other Covariant Classes</title><source>Wiley Online Library All Obooks</source><creator>Gonçalvés, Paulo ; Ovarlez, Jean‐Philippe ; Baraniuk, Richard</creator><contributor>Auger, François ; Hlawatsch, Franz</contributor><creatorcontrib>Gonçalvés, Paulo ; Ovarlez, Jean‐Philippe ; Baraniuk, Richard ; Auger, François ; Hlawatsch, Franz</creatorcontrib><description>Affine time‐frequency distributions appeared towards the middle of the 1980s with the emergence of wavelet theory. The affine class is built upon the principle of covariance of the affine group, i.e., contractions‐dilations and translations in time. This group provides an interesting alternative to the group of translations in time and in frequency, which forms the basis for the conventional time‐frequency distributions of Cohen's class. More precisely, as the Doppler effect on “broadband” signals is expressed in terms of contractions‐dilations, it is for the analysis of this category of signals that the affine class is particularly destined. The objective of this chapter is to present the various approaches for constructing the affine class and the associated tools devised over the past years. We will demonstrate how the latter supported the introduction of new mathematical concepts in signal processing — group theory, operator theory — as well as of new classes of covariant time‐frequency distributions.</description><identifier>ISBN: 9781848210332</identifier><identifier>ISBN: 1848210337</identifier><identifier>EISBN: 9780470611203</identifier><identifier>EISBN: 0470611200</identifier><identifier>DOI: 10.1002/9780470611203.ch7</identifier><language>eng</language><publisher>London, UK: ISTE</publisher><subject>affine group ; affine time‐frequency analysis ; affine Wigner distributions ; Bertrand distributions ; covariance principle ; hyperbolic class ; power classes ; unitary equivalence ; wavelets</subject><ispartof>Time‐Frequency Analysis, 2008, p.193-226</ispartof><rights>Copyright © 2008 ISTE Ltd.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470611203.ch7$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002/9780470611203.ch7$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>777,778,782,791,4311,27912,52519,52667</link.rule.ids></links><search><contributor>Auger, François</contributor><contributor>Hlawatsch, Franz</contributor><creatorcontrib>Gonçalvés, Paulo</creatorcontrib><creatorcontrib>Ovarlez, Jean‐Philippe</creatorcontrib><creatorcontrib>Baraniuk, Richard</creatorcontrib><title>Quadratic Time‐Frequency Analysis III: The Affine Class and Other Covariant Classes</title><title>Time‐Frequency Analysis</title><description>Affine time‐frequency distributions appeared towards the middle of the 1980s with the emergence of wavelet theory. The affine class is built upon the principle of covariance of the affine group, i.e., contractions‐dilations and translations in time. This group provides an interesting alternative to the group of translations in time and in frequency, which forms the basis for the conventional time‐frequency distributions of Cohen's class. More precisely, as the Doppler effect on “broadband” signals is expressed in terms of contractions‐dilations, it is for the analysis of this category of signals that the affine class is particularly destined. The objective of this chapter is to present the various approaches for constructing the affine class and the associated tools devised over the past years. We will demonstrate how the latter supported the introduction of new mathematical concepts in signal processing — group theory, operator theory — as well as of new classes of covariant time‐frequency distributions.</description><subject>affine group</subject><subject>affine time‐frequency analysis</subject><subject>affine Wigner distributions</subject><subject>Bertrand distributions</subject><subject>covariance principle</subject><subject>hyperbolic class</subject><subject>power classes</subject><subject>unitary equivalence</subject><subject>wavelets</subject><isbn>9781848210332</isbn><isbn>1848210337</isbn><isbn>9780470611203</isbn><isbn>0470611200</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2008</creationdate><recordtype>book_chapter</recordtype><sourceid/><recordid>eNpVkE1KxEAQhVtEUMYcwF1fIGN3V__FXQiOBgYGIa5DJ6mQaEwwnVGy8wie0ZOYcdxMwaN4r6Co-gi54WzNGRO3kbFMGqY5FwzWZWPOSHCSnf95bqUVnAGISxJ4_8KWAiUt6Cvy_LR31eimtqRZ-4Y_X9-bEd_32JczjXvXzb71NE3TO5o1SOO6bnukSee8p66v6G5qcKTJ8OHG1vXTcYL-mlzUrvMY_PcVyTb3WfIYbncPaRJvQ7-cZ0KJNSCXNjIKBHClKlVbVjpRRahR2oJJ0BqwQqiXF4RyPCoMWsu0KUoOK8KPaz_bDucci2F49Tln-YFOfkIiX-gcBL-U_VdR</recordid><startdate>20080101</startdate><enddate>20080101</enddate><creator>Gonçalvés, Paulo</creator><creator>Ovarlez, Jean‐Philippe</creator><creator>Baraniuk, Richard</creator><general>ISTE</general><scope/></search><sort><creationdate>20080101</creationdate><title>Quadratic Time‐Frequency Analysis III: The Affine Class and Other Covariant Classes</title><author>Gonçalvés, Paulo ; Ovarlez, Jean‐Philippe ; Baraniuk, Richard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-s1127-4ef3e148975323155d5f80ca2d9e6e48b043663ede3f48225a19b7e88067bc13</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2008</creationdate><topic>affine group</topic><topic>affine time‐frequency analysis</topic><topic>affine Wigner distributions</topic><topic>Bertrand distributions</topic><topic>covariance principle</topic><topic>hyperbolic class</topic><topic>power classes</topic><topic>unitary equivalence</topic><topic>wavelets</topic><toplevel>online_resources</toplevel><creatorcontrib>Gonçalvés, Paulo</creatorcontrib><creatorcontrib>Ovarlez, Jean‐Philippe</creatorcontrib><creatorcontrib>Baraniuk, Richard</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gonçalvés, Paulo</au><au>Ovarlez, Jean‐Philippe</au><au>Baraniuk, Richard</au><au>Auger, François</au><au>Hlawatsch, Franz</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Quadratic Time‐Frequency Analysis III: The Affine Class and Other Covariant Classes</atitle><btitle>Time‐Frequency Analysis</btitle><date>2008-01-01</date><risdate>2008</risdate><spage>193</spage><epage>226</epage><pages>193-226</pages><isbn>9781848210332</isbn><isbn>1848210337</isbn><eisbn>9780470611203</eisbn><eisbn>0470611200</eisbn><abstract>Affine time‐frequency distributions appeared towards the middle of the 1980s with the emergence of wavelet theory. The affine class is built upon the principle of covariance of the affine group, i.e., contractions‐dilations and translations in time. This group provides an interesting alternative to the group of translations in time and in frequency, which forms the basis for the conventional time‐frequency distributions of Cohen's class. More precisely, as the Doppler effect on “broadband” signals is expressed in terms of contractions‐dilations, it is for the analysis of this category of signals that the affine class is particularly destined. The objective of this chapter is to present the various approaches for constructing the affine class and the associated tools devised over the past years. We will demonstrate how the latter supported the introduction of new mathematical concepts in signal processing — group theory, operator theory — as well as of new classes of covariant time‐frequency distributions.</abstract><cop>London, UK</cop><pub>ISTE</pub><doi>10.1002/9780470611203.ch7</doi><tpages>34</tpages></addata></record>
fulltext fulltext
identifier ISBN: 9781848210332
ispartof Time‐Frequency Analysis, 2008, p.193-226
issn
language eng
recordid cdi_wiley_ebooks_10_1002_9780470611203_ch7_ch7
source Wiley Online Library All Obooks
subjects affine group
affine time‐frequency analysis
affine Wigner distributions
Bertrand distributions
covariance principle
hyperbolic class
power classes
unitary equivalence
wavelets
title Quadratic Time‐Frequency Analysis III: The Affine Class and Other Covariant Classes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T16%3A38%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Quadratic%20Time%E2%80%90Frequency%20Analysis%20III:%20The%20Affine%20Class%20and%20Other%20Covariant%20Classes&rft.btitle=Time%E2%80%90Frequency%20Analysis&rft.au=Gon%C3%A7alv%C3%A9s,%20Paulo&rft.date=2008-01-01&rft.spage=193&rft.epage=226&rft.pages=193-226&rft.isbn=9781848210332&rft.isbn_list=1848210337&rft_id=info:doi/10.1002/9780470611203.ch7&rft_dat=%3Cwiley%3E10.1002/9780470611203.ch7%3C/wiley%3E%3Curl%3E%3C/url%3E&rft.eisbn=9780470611203&rft.eisbn_list=0470611200&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true