Sub-Laplacian eigenvalue bounds on sub-Riemannian manifolds
We study eigenvalue problems for intrinsic sub-Laplacians on regular sub-Riemannian manifolds. We prove upper bounds for sub-Laplacian eigenvalues λk of conformal sub-Riemannian metrics that are asymptotically sharp as k→+∞. For Sasakian manifolds with a lower Ricci curvature bound, and more general...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study eigenvalue problems for intrinsic sub-Laplacians on regular sub-Riemannian manifolds. We prove upper bounds for sub-Laplacian eigenvalues λk of conformal sub-Riemannian metrics that are asymptotically sharp as k→+∞. For Sasakian manifolds with a lower Ricci curvature bound, and more generally, for contact metric manifolds conformal to such Sasakian manifolds, we obtain eigenvalue inequalities that can be viewed as versions of the classical results by Korevaar and Buser in Riemannian geometry. |
---|---|
DOI: | 10.2422/2036-2145.201409_005 |