Diffused Phase Transition Boosts Thermal Stability of High-Performance Lead-Free Piezoelectrics
High piezoelectricity of (K,Na)NbO3 (KNN) lead-free materials benefits from a polymorphic phase transition (PPT) around room temperature, but its temperature sensitivity has been a bottleneck impeding their applications. We find that good thermal stability can be achieved in CaZrO3-modified KNN lead...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , , |
---|---|
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | High piezoelectricity of (K,Na)NbO3 (KNN) lead-free materials benefits from a polymorphic phase transition (PPT) around room temperature, but its temperature sensitivity has been a bottleneck impeding their applications. We find that good thermal stability can be achieved in CaZrO3-modified KNN lead-free piezoceramics, in which the normalized strain d33* almost keeps constant from room temperature up to 140 oC. In situ synchrotron X-ray diffraction experiments combined with permitivity measurements disclose the occurrence of a new phase transformation under an electrical field, which extends the transition range between tetragonal and orthorhombic phases. It is revealed that such an electrically-enhanced diffused polymorphic phase transition (EED-PPT) contributed to the boosted thermal stability of KNN based lead-free piezoceramics with high piezoelectricity. The present approach based on phase engineering should also be effective in endowing other lead-free piezoelectrics with high piezoelectricity and good temperature stability. |
---|---|
DOI: | 10.1002/adfm.201504256 |