Prediction of the thermal conductivity of refrigerants and refrigerant mixtures
We use an extended corresponding states model to predict the thermal conductivity of pure halocarbon refrigerants and refrigerant mixtures. The model uses R134a (1,1,1,2-tetrafluoroethane) as the reference fluid, and we present a correlation, including critical enhancement, for the thermal conductiv...
Gespeichert in:
Veröffentlicht in: | Fluid phase equilibria 1992-11, Vol.80, p.249-261 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 261 |
---|---|
container_issue | |
container_start_page | 249 |
container_title | Fluid phase equilibria |
container_volume | 80 |
creator | Huber, Marcia L. Friend, Daniel G. Ely, James F. |
description | We use an extended corresponding states model to predict the thermal conductivity of pure halocarbon refrigerants and refrigerant mixtures. The model uses R134a (1,1,1,2-tetrafluoroethane) as the reference fluid, and we present a correlation, including critical enhancement, for the thermal conductivity of R134a. We give sample results comparing the model predictions with experimental data for pure halocarbon refrigerants and refrigerant mixtures; typically, the uncertainty of the predictions is 5–10 percent. |
doi_str_mv | 10.1016/0378-3812(92)87072-U |
format | Article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_0378_3812_92_87072_U</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>037838129287072U</els_id><sourcerecordid>037838129287072U</sourcerecordid><originalsourceid>FETCH-LOGICAL-c435t-958991d5be12b0ff19c9bbd115ccddf4176d0231728fa43902d66cf9c0152e853</originalsourceid><addsrcrecordid>eNp9UE1LAzEQDaJgrf4DD3vwoIfVTPYruQhS6gcU6sGeQ3aSaKTdLUla7L83a6V48jAMzLw3894j5BLoLVCo72jR8LzgwK4Fu-ENbVi-OCIj4I3IKWPlMRkdIKfkLIRPSilUNRuR-as32mF0fZf1NosfZii_UssM-05v0mbr4m7YeWO9ezdedTFkqtN_B9nKfcWNN-GcnFi1DObit4_J4nH6NnnOZ_Onl8nDLMeyqGIuKi4E6Ko1wFpqLQgUbasBKkStbQlNrSkroGHcqrIQlOm6RiswyWaGV8WYlPu76PsQkhK59m6l_E4ClUMocnAsB8dSMPkTilwk2tWetlYB1dIm7ejCgVuW6SEXCXa_h5lkYeuMlwGd6TBF5Q1GqXv3_59vWBd3Ag</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Prediction of the thermal conductivity of refrigerants and refrigerant mixtures</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Huber, Marcia L. ; Friend, Daniel G. ; Ely, James F.</creator><creatorcontrib>Huber, Marcia L. ; Friend, Daniel G. ; Ely, James F.</creatorcontrib><description>We use an extended corresponding states model to predict the thermal conductivity of pure halocarbon refrigerants and refrigerant mixtures. The model uses R134a (1,1,1,2-tetrafluoroethane) as the reference fluid, and we present a correlation, including critical enhancement, for the thermal conductivity of R134a. We give sample results comparing the model predictions with experimental data for pure halocarbon refrigerants and refrigerant mixtures; typically, the uncertainty of the predictions is 5–10 percent.</description><identifier>ISSN: 0378-3812</identifier><identifier>EISSN: 1879-0224</identifier><identifier>DOI: 10.1016/0378-3812(92)87072-U</identifier><identifier>CODEN: FPEQDT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Chemistry ; corresponding states model ; Exact sciences and technology ; General and physical chemistry ; prediction ; R134a ; refrigerants ; Solution properties ; Solutions ; thermal conductivity</subject><ispartof>Fluid phase equilibria, 1992-11, Vol.80, p.249-261</ispartof><rights>1992</rights><rights>1993 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c435t-958991d5be12b0ff19c9bbd115ccddf4176d0231728fa43902d66cf9c0152e853</citedby><cites>FETCH-LOGICAL-c435t-958991d5be12b0ff19c9bbd115ccddf4176d0231728fa43902d66cf9c0152e853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0378-3812(92)87072-U$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,3550,23930,23931,25140,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=4472889$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Huber, Marcia L.</creatorcontrib><creatorcontrib>Friend, Daniel G.</creatorcontrib><creatorcontrib>Ely, James F.</creatorcontrib><title>Prediction of the thermal conductivity of refrigerants and refrigerant mixtures</title><title>Fluid phase equilibria</title><description>We use an extended corresponding states model to predict the thermal conductivity of pure halocarbon refrigerants and refrigerant mixtures. The model uses R134a (1,1,1,2-tetrafluoroethane) as the reference fluid, and we present a correlation, including critical enhancement, for the thermal conductivity of R134a. We give sample results comparing the model predictions with experimental data for pure halocarbon refrigerants and refrigerant mixtures; typically, the uncertainty of the predictions is 5–10 percent.</description><subject>Chemistry</subject><subject>corresponding states model</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>prediction</subject><subject>R134a</subject><subject>refrigerants</subject><subject>Solution properties</subject><subject>Solutions</subject><subject>thermal conductivity</subject><issn>0378-3812</issn><issn>1879-0224</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LAzEQDaJgrf4DD3vwoIfVTPYruQhS6gcU6sGeQ3aSaKTdLUla7L83a6V48jAMzLw3894j5BLoLVCo72jR8LzgwK4Fu-ENbVi-OCIj4I3IKWPlMRkdIKfkLIRPSilUNRuR-as32mF0fZf1NosfZii_UssM-05v0mbr4m7YeWO9ezdedTFkqtN_B9nKfcWNN-GcnFi1DObit4_J4nH6NnnOZ_Onl8nDLMeyqGIuKi4E6Ko1wFpqLQgUbasBKkStbQlNrSkroGHcqrIQlOm6RiswyWaGV8WYlPu76PsQkhK59m6l_E4ClUMocnAsB8dSMPkTilwk2tWetlYB1dIm7ejCgVuW6SEXCXa_h5lkYeuMlwGd6TBF5Q1GqXv3_59vWBd3Ag</recordid><startdate>19921130</startdate><enddate>19921130</enddate><creator>Huber, Marcia L.</creator><creator>Friend, Daniel G.</creator><creator>Ely, James F.</creator><general>Elsevier B.V</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19921130</creationdate><title>Prediction of the thermal conductivity of refrigerants and refrigerant mixtures</title><author>Huber, Marcia L. ; Friend, Daniel G. ; Ely, James F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c435t-958991d5be12b0ff19c9bbd115ccddf4176d0231728fa43902d66cf9c0152e853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>Chemistry</topic><topic>corresponding states model</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>prediction</topic><topic>R134a</topic><topic>refrigerants</topic><topic>Solution properties</topic><topic>Solutions</topic><topic>thermal conductivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huber, Marcia L.</creatorcontrib><creatorcontrib>Friend, Daniel G.</creatorcontrib><creatorcontrib>Ely, James F.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Fluid phase equilibria</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huber, Marcia L.</au><au>Friend, Daniel G.</au><au>Ely, James F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of the thermal conductivity of refrigerants and refrigerant mixtures</atitle><jtitle>Fluid phase equilibria</jtitle><date>1992-11-30</date><risdate>1992</risdate><volume>80</volume><spage>249</spage><epage>261</epage><pages>249-261</pages><issn>0378-3812</issn><eissn>1879-0224</eissn><coden>FPEQDT</coden><abstract>We use an extended corresponding states model to predict the thermal conductivity of pure halocarbon refrigerants and refrigerant mixtures. The model uses R134a (1,1,1,2-tetrafluoroethane) as the reference fluid, and we present a correlation, including critical enhancement, for the thermal conductivity of R134a. We give sample results comparing the model predictions with experimental data for pure halocarbon refrigerants and refrigerant mixtures; typically, the uncertainty of the predictions is 5–10 percent.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/0378-3812(92)87072-U</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0378-3812 |
ispartof | Fluid phase equilibria, 1992-11, Vol.80, p.249-261 |
issn | 0378-3812 1879-0224 |
language | eng |
recordid | cdi_crossref_primary_10_1016_0378_3812_92_87072_U |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Chemistry corresponding states model Exact sciences and technology General and physical chemistry prediction R134a refrigerants Solution properties Solutions thermal conductivity |
title | Prediction of the thermal conductivity of refrigerants and refrigerant mixtures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T21%3A51%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20the%20thermal%20conductivity%20of%20refrigerants%20and%20refrigerant%20mixtures&rft.jtitle=Fluid%20phase%20equilibria&rft.au=Huber,%20Marcia%20L.&rft.date=1992-11-30&rft.volume=80&rft.spage=249&rft.epage=261&rft.pages=249-261&rft.issn=0378-3812&rft.eissn=1879-0224&rft.coden=FPEQDT&rft_id=info:doi/10.1016/0378-3812(92)87072-U&rft_dat=%3Celsevier_cross%3E037838129287072U%3C/elsevier_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=037838129287072U&rfr_iscdi=true |