Prediction of the thermal conductivity of refrigerants and refrigerant mixtures

We use an extended corresponding states model to predict the thermal conductivity of pure halocarbon refrigerants and refrigerant mixtures. The model uses R134a (1,1,1,2-tetrafluoroethane) as the reference fluid, and we present a correlation, including critical enhancement, for the thermal conductiv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fluid phase equilibria 1992-11, Vol.80, p.249-261
Hauptverfasser: Huber, Marcia L., Friend, Daniel G., Ely, James F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 261
container_issue
container_start_page 249
container_title Fluid phase equilibria
container_volume 80
creator Huber, Marcia L.
Friend, Daniel G.
Ely, James F.
description We use an extended corresponding states model to predict the thermal conductivity of pure halocarbon refrigerants and refrigerant mixtures. The model uses R134a (1,1,1,2-tetrafluoroethane) as the reference fluid, and we present a correlation, including critical enhancement, for the thermal conductivity of R134a. We give sample results comparing the model predictions with experimental data for pure halocarbon refrigerants and refrigerant mixtures; typically, the uncertainty of the predictions is 5–10 percent.
doi_str_mv 10.1016/0378-3812(92)87072-U
format Article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_0378_3812_92_87072_U</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>037838129287072U</els_id><sourcerecordid>037838129287072U</sourcerecordid><originalsourceid>FETCH-LOGICAL-c435t-958991d5be12b0ff19c9bbd115ccddf4176d0231728fa43902d66cf9c0152e853</originalsourceid><addsrcrecordid>eNp9UE1LAzEQDaJgrf4DD3vwoIfVTPYruQhS6gcU6sGeQ3aSaKTdLUla7L83a6V48jAMzLw3894j5BLoLVCo72jR8LzgwK4Fu-ENbVi-OCIj4I3IKWPlMRkdIKfkLIRPSilUNRuR-as32mF0fZf1NosfZii_UssM-05v0mbr4m7YeWO9ezdedTFkqtN_B9nKfcWNN-GcnFi1DObit4_J4nH6NnnOZ_Onl8nDLMeyqGIuKi4E6Ko1wFpqLQgUbasBKkStbQlNrSkroGHcqrIQlOm6RiswyWaGV8WYlPu76PsQkhK59m6l_E4ClUMocnAsB8dSMPkTilwk2tWetlYB1dIm7ejCgVuW6SEXCXa_h5lkYeuMlwGd6TBF5Q1GqXv3_59vWBd3Ag</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Prediction of the thermal conductivity of refrigerants and refrigerant mixtures</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Huber, Marcia L. ; Friend, Daniel G. ; Ely, James F.</creator><creatorcontrib>Huber, Marcia L. ; Friend, Daniel G. ; Ely, James F.</creatorcontrib><description>We use an extended corresponding states model to predict the thermal conductivity of pure halocarbon refrigerants and refrigerant mixtures. The model uses R134a (1,1,1,2-tetrafluoroethane) as the reference fluid, and we present a correlation, including critical enhancement, for the thermal conductivity of R134a. We give sample results comparing the model predictions with experimental data for pure halocarbon refrigerants and refrigerant mixtures; typically, the uncertainty of the predictions is 5–10 percent.</description><identifier>ISSN: 0378-3812</identifier><identifier>EISSN: 1879-0224</identifier><identifier>DOI: 10.1016/0378-3812(92)87072-U</identifier><identifier>CODEN: FPEQDT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Chemistry ; corresponding states model ; Exact sciences and technology ; General and physical chemistry ; prediction ; R134a ; refrigerants ; Solution properties ; Solutions ; thermal conductivity</subject><ispartof>Fluid phase equilibria, 1992-11, Vol.80, p.249-261</ispartof><rights>1992</rights><rights>1993 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c435t-958991d5be12b0ff19c9bbd115ccddf4176d0231728fa43902d66cf9c0152e853</citedby><cites>FETCH-LOGICAL-c435t-958991d5be12b0ff19c9bbd115ccddf4176d0231728fa43902d66cf9c0152e853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0378-3812(92)87072-U$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,3550,23930,23931,25140,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4472889$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Huber, Marcia L.</creatorcontrib><creatorcontrib>Friend, Daniel G.</creatorcontrib><creatorcontrib>Ely, James F.</creatorcontrib><title>Prediction of the thermal conductivity of refrigerants and refrigerant mixtures</title><title>Fluid phase equilibria</title><description>We use an extended corresponding states model to predict the thermal conductivity of pure halocarbon refrigerants and refrigerant mixtures. The model uses R134a (1,1,1,2-tetrafluoroethane) as the reference fluid, and we present a correlation, including critical enhancement, for the thermal conductivity of R134a. We give sample results comparing the model predictions with experimental data for pure halocarbon refrigerants and refrigerant mixtures; typically, the uncertainty of the predictions is 5–10 percent.</description><subject>Chemistry</subject><subject>corresponding states model</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>prediction</subject><subject>R134a</subject><subject>refrigerants</subject><subject>Solution properties</subject><subject>Solutions</subject><subject>thermal conductivity</subject><issn>0378-3812</issn><issn>1879-0224</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LAzEQDaJgrf4DD3vwoIfVTPYruQhS6gcU6sGeQ3aSaKTdLUla7L83a6V48jAMzLw3894j5BLoLVCo72jR8LzgwK4Fu-ENbVi-OCIj4I3IKWPlMRkdIKfkLIRPSilUNRuR-as32mF0fZf1NosfZii_UssM-05v0mbr4m7YeWO9ezdedTFkqtN_B9nKfcWNN-GcnFi1DObit4_J4nH6NnnOZ_Onl8nDLMeyqGIuKi4E6Ko1wFpqLQgUbasBKkStbQlNrSkroGHcqrIQlOm6RiswyWaGV8WYlPu76PsQkhK59m6l_E4ClUMocnAsB8dSMPkTilwk2tWetlYB1dIm7ejCgVuW6SEXCXa_h5lkYeuMlwGd6TBF5Q1GqXv3_59vWBd3Ag</recordid><startdate>19921130</startdate><enddate>19921130</enddate><creator>Huber, Marcia L.</creator><creator>Friend, Daniel G.</creator><creator>Ely, James F.</creator><general>Elsevier B.V</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19921130</creationdate><title>Prediction of the thermal conductivity of refrigerants and refrigerant mixtures</title><author>Huber, Marcia L. ; Friend, Daniel G. ; Ely, James F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c435t-958991d5be12b0ff19c9bbd115ccddf4176d0231728fa43902d66cf9c0152e853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>Chemistry</topic><topic>corresponding states model</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>prediction</topic><topic>R134a</topic><topic>refrigerants</topic><topic>Solution properties</topic><topic>Solutions</topic><topic>thermal conductivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huber, Marcia L.</creatorcontrib><creatorcontrib>Friend, Daniel G.</creatorcontrib><creatorcontrib>Ely, James F.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Fluid phase equilibria</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huber, Marcia L.</au><au>Friend, Daniel G.</au><au>Ely, James F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of the thermal conductivity of refrigerants and refrigerant mixtures</atitle><jtitle>Fluid phase equilibria</jtitle><date>1992-11-30</date><risdate>1992</risdate><volume>80</volume><spage>249</spage><epage>261</epage><pages>249-261</pages><issn>0378-3812</issn><eissn>1879-0224</eissn><coden>FPEQDT</coden><abstract>We use an extended corresponding states model to predict the thermal conductivity of pure halocarbon refrigerants and refrigerant mixtures. The model uses R134a (1,1,1,2-tetrafluoroethane) as the reference fluid, and we present a correlation, including critical enhancement, for the thermal conductivity of R134a. We give sample results comparing the model predictions with experimental data for pure halocarbon refrigerants and refrigerant mixtures; typically, the uncertainty of the predictions is 5–10 percent.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/0378-3812(92)87072-U</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0378-3812
ispartof Fluid phase equilibria, 1992-11, Vol.80, p.249-261
issn 0378-3812
1879-0224
language eng
recordid cdi_crossref_primary_10_1016_0378_3812_92_87072_U
source ScienceDirect Journals (5 years ago - present)
subjects Chemistry
corresponding states model
Exact sciences and technology
General and physical chemistry
prediction
R134a
refrigerants
Solution properties
Solutions
thermal conductivity
title Prediction of the thermal conductivity of refrigerants and refrigerant mixtures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T21%3A51%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20the%20thermal%20conductivity%20of%20refrigerants%20and%20refrigerant%20mixtures&rft.jtitle=Fluid%20phase%20equilibria&rft.au=Huber,%20Marcia%20L.&rft.date=1992-11-30&rft.volume=80&rft.spage=249&rft.epage=261&rft.pages=249-261&rft.issn=0378-3812&rft.eissn=1879-0224&rft.coden=FPEQDT&rft_id=info:doi/10.1016/0378-3812(92)87072-U&rft_dat=%3Celsevier_cross%3E037838129287072U%3C/elsevier_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=037838129287072U&rfr_iscdi=true