Migration of Langerhans Cells into the Epidermis of Human Skin Grafted onto Nude Mice
In a previous study, it was demonstrated that human Langerhans cells (LC) are preserved in human skin grafted onto a nude mouse. Moreover, although it was observed that mouse LC of the host invade skin grafts from allogeneic mouse or rat, they do not penetrate in human skin grafts. In most of the hu...
Gespeichert in:
Veröffentlicht in: | Journal of investigative dermatology 1992-11, Vol.99 (5), p.S54-S55 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In a previous study, it was demonstrated that human Langerhans cells (LC) are preserved in human skin grafted onto a nude mouse. Moreover, although it was observed that mouse LC of the host invade skin grafts from allogeneic mouse or rat, they do not penetrate in human skin grafts. In most of the human skin equivalent systems produced in vitro, LC appear to be lost. The present study was designed to investigate whether the mouse LC will repopulate a human skin equivalent. For this purpose, two different systems of skin equivalent have been grafted onto the nude mouse. They were composed of human keratinocytes deposited on dead human dermis, or on lattice composed of human fibroblasts embedded in type I collagen. At different times after grafting, the presence of LC in the transplants was assayed either by indirect immunofluorescence or by electron microscopy. Indirect immunofluorescence was performed on frozen sections or on epidermal sheets with anti-Ia, anti- HLA-DR, or OKT6 antibodies. It was observed that, at 2 months after grafting, Ia(+) HLA-DR(-) OKT6(-) cells are present in grafted human epidermis. Moreover, LC with typical Birbeck granules are also detected by electron microscopy. It could be concluded, from this study, that mouse LC can repopulate human epidermis devoid of human LC. |
---|---|
ISSN: | 0022-202X 1523-1747 |
DOI: | 10.1111/1523-1747.ep12668995 |