Phase Transition toward a Thermodynamically Less Stable Phase: Cross-Nucleation due to Thin Film Growth of a Benzothieno-benzothiophene Derivative

The molecule 2-decyl-7-phenyl-[1]benzothieno-[3,2-b][1]benzothiophene is an organic semiconductor, with outstanding properties in terms of molecular packing and its use in organic electronics. The asymmetric shape of the molecule causes a double layer crystal structure at room temperature. In this w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2021-12, Vol.125 (51), p.28039-28047
Hauptverfasser: Hofer, Sebastian, Hofer, Andreas, Simbrunner, Josef, Ramsey, Michael, Sterrer, Martin, Sanzone, Alessandro, Beverina, Luca, Geerts, Yves, Resel, Roland
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 28047
container_issue 51
container_start_page 28039
container_title Journal of physical chemistry. C
container_volume 125
creator Hofer, Sebastian
Hofer, Andreas
Simbrunner, Josef
Ramsey, Michael
Sterrer, Martin
Sanzone, Alessandro
Beverina, Luca
Geerts, Yves
Resel, Roland
description The molecule 2-decyl-7-phenyl-[1]benzothieno-[3,2-b][1]benzothiophene is an organic semiconductor, with outstanding properties in terms of molecular packing and its use in organic electronics. The asymmetric shape of the molecule causes a double layer crystal structure at room temperature. In this work we report its thin film growth by physical vapor deposition starting from the monolayer regime up to thick films. The films are studied in terms of their morphology, crystallographic properties, and thermal stability by atomic force microscopy and X-ray diffraction methods. It is found that the bulk molecular packing of the bilayer is formed at the initial thin film growth stage. After a thickness of one double layer, a transition into a new polymorph is observed which is of metastable character. The new phase represents a single layer phase; the crystal structure could be solved by a combination of X-ray diffraction and molecular dynamics simulations. The observed thin film growth is outstanding in terms of surface crystallization: the formation of a metastable phase is not associated with the initial thin film growth, since the first growth stage represents rather the bulk crystal structure of this molecule. Its formation is associated with cross-nucleation of one polymorph by another, which explains why a metastable phase can be formed on top of a thermodynamically more stable phase.
doi_str_mv 10.1021/acs.jpcc.1c06610
format Article
fullrecord <record><control><sourceid>webofscience</sourceid><recordid>TN_cdi_webofscience_primary_000756016500015</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>000756016500015</sourcerecordid><originalsourceid>FETCH-webofscience_primary_0007560165000153</originalsourceid><addsrcrecordid>eNqVjz1PwzAURS0EouVjZ3w7Sniu4wQYKRQGhJDIXjnOi-IqsSM7bVR-Br8Yq6rYme4d7jnSZeyGY8pxwe-UDulm0DrlGvOc4wmb8wexSIpMytO_nhUzdhHCBlEK5OKczYREFNm9mLOfz1YFgtIrG8xonIXRTcrXoKBsyfeu3lvVG626bg_vFAJ8jarqCA7cIyy9CyH52OqO1AGvtxQVETYWVqbr4dW7aWzBNVH5RPbbja0h65Lq2N3QkiV4Jm92UbGjK3bWqC7Q9TEv2e3qpVy-JRNVrgk60prWgze98vs1IhYyR57HS8il-N_6F3AsZMk</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Phase Transition toward a Thermodynamically Less Stable Phase: Cross-Nucleation due to Thin Film Growth of a Benzothieno-benzothiophene Derivative</title><source>ACS Publications</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Hofer, Sebastian ; Hofer, Andreas ; Simbrunner, Josef ; Ramsey, Michael ; Sterrer, Martin ; Sanzone, Alessandro ; Beverina, Luca ; Geerts, Yves ; Resel, Roland</creator><creatorcontrib>Hofer, Sebastian ; Hofer, Andreas ; Simbrunner, Josef ; Ramsey, Michael ; Sterrer, Martin ; Sanzone, Alessandro ; Beverina, Luca ; Geerts, Yves ; Resel, Roland</creatorcontrib><description>The molecule 2-decyl-7-phenyl-[1]benzothieno-[3,2-b][1]benzothiophene is an organic semiconductor, with outstanding properties in terms of molecular packing and its use in organic electronics. The asymmetric shape of the molecule causes a double layer crystal structure at room temperature. In this work we report its thin film growth by physical vapor deposition starting from the monolayer regime up to thick films. The films are studied in terms of their morphology, crystallographic properties, and thermal stability by atomic force microscopy and X-ray diffraction methods. It is found that the bulk molecular packing of the bilayer is formed at the initial thin film growth stage. After a thickness of one double layer, a transition into a new polymorph is observed which is of metastable character. The new phase represents a single layer phase; the crystal structure could be solved by a combination of X-ray diffraction and molecular dynamics simulations. The observed thin film growth is outstanding in terms of surface crystallization: the formation of a metastable phase is not associated with the initial thin film growth, since the first growth stage represents rather the bulk crystal structure of this molecule. Its formation is associated with cross-nucleation of one polymorph by another, which explains why a metastable phase can be formed on top of a thermodynamically more stable phase.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.1c06610</identifier><identifier>PMID: 35003483</identifier><language>eng</language><publisher>WASHINGTON: Amer Chemical Soc</publisher><subject>Chemistry ; Chemistry, Physical ; Materials Science ; Materials Science, Multidisciplinary ; Nanoscience &amp; Nanotechnology ; Physical Sciences ; Science &amp; Technology ; Science &amp; Technology - Other Topics ; Technology</subject><ispartof>Journal of physical chemistry. C, 2021-12, Vol.125 (51), p.28039-28047</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><cites>FETCH-webofscience_primary_0007560165000153</cites><orcidid>0000-0003-0079-3525 ; 0000-0002-6450-545X ; 0000-0001-9089-9061 ; 0000-0002-2660-5767</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,27933,27934,39267</link.rule.ids></links><search><creatorcontrib>Hofer, Sebastian</creatorcontrib><creatorcontrib>Hofer, Andreas</creatorcontrib><creatorcontrib>Simbrunner, Josef</creatorcontrib><creatorcontrib>Ramsey, Michael</creatorcontrib><creatorcontrib>Sterrer, Martin</creatorcontrib><creatorcontrib>Sanzone, Alessandro</creatorcontrib><creatorcontrib>Beverina, Luca</creatorcontrib><creatorcontrib>Geerts, Yves</creatorcontrib><creatorcontrib>Resel, Roland</creatorcontrib><title>Phase Transition toward a Thermodynamically Less Stable Phase: Cross-Nucleation due to Thin Film Growth of a Benzothieno-benzothiophene Derivative</title><title>Journal of physical chemistry. C</title><addtitle>J PHYS CHEM C</addtitle><description>The molecule 2-decyl-7-phenyl-[1]benzothieno-[3,2-b][1]benzothiophene is an organic semiconductor, with outstanding properties in terms of molecular packing and its use in organic electronics. The asymmetric shape of the molecule causes a double layer crystal structure at room temperature. In this work we report its thin film growth by physical vapor deposition starting from the monolayer regime up to thick films. The films are studied in terms of their morphology, crystallographic properties, and thermal stability by atomic force microscopy and X-ray diffraction methods. It is found that the bulk molecular packing of the bilayer is formed at the initial thin film growth stage. After a thickness of one double layer, a transition into a new polymorph is observed which is of metastable character. The new phase represents a single layer phase; the crystal structure could be solved by a combination of X-ray diffraction and molecular dynamics simulations. The observed thin film growth is outstanding in terms of surface crystallization: the formation of a metastable phase is not associated with the initial thin film growth, since the first growth stage represents rather the bulk crystal structure of this molecule. Its formation is associated with cross-nucleation of one polymorph by another, which explains why a metastable phase can be formed on top of a thermodynamically more stable phase.</description><subject>Chemistry</subject><subject>Chemistry, Physical</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>Nanoscience &amp; Nanotechnology</subject><subject>Physical Sciences</subject><subject>Science &amp; Technology</subject><subject>Science &amp; Technology - Other Topics</subject><subject>Technology</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqVjz1PwzAURS0EouVjZ3w7Sniu4wQYKRQGhJDIXjnOi-IqsSM7bVR-Br8Yq6rYme4d7jnSZeyGY8pxwe-UDulm0DrlGvOc4wmb8wexSIpMytO_nhUzdhHCBlEK5OKczYREFNm9mLOfz1YFgtIrG8xonIXRTcrXoKBsyfeu3lvVG626bg_vFAJ8jarqCA7cIyy9CyH52OqO1AGvtxQVETYWVqbr4dW7aWzBNVH5RPbbja0h65Lq2N3QkiV4Jm92UbGjK3bWqC7Q9TEv2e3qpVy-JRNVrgk60prWgze98vs1IhYyR57HS8il-N_6F3AsZMk</recordid><startdate>20211230</startdate><enddate>20211230</enddate><creator>Hofer, Sebastian</creator><creator>Hofer, Andreas</creator><creator>Simbrunner, Josef</creator><creator>Ramsey, Michael</creator><creator>Sterrer, Martin</creator><creator>Sanzone, Alessandro</creator><creator>Beverina, Luca</creator><creator>Geerts, Yves</creator><creator>Resel, Roland</creator><general>Amer Chemical Soc</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><orcidid>https://orcid.org/0000-0003-0079-3525</orcidid><orcidid>https://orcid.org/0000-0002-6450-545X</orcidid><orcidid>https://orcid.org/0000-0001-9089-9061</orcidid><orcidid>https://orcid.org/0000-0002-2660-5767</orcidid></search><sort><creationdate>20211230</creationdate><title>Phase Transition toward a Thermodynamically Less Stable Phase: Cross-Nucleation due to Thin Film Growth of a Benzothieno-benzothiophene Derivative</title><author>Hofer, Sebastian ; Hofer, Andreas ; Simbrunner, Josef ; Ramsey, Michael ; Sterrer, Martin ; Sanzone, Alessandro ; Beverina, Luca ; Geerts, Yves ; Resel, Roland</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-webofscience_primary_0007560165000153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Chemistry</topic><topic>Chemistry, Physical</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>Nanoscience &amp; Nanotechnology</topic><topic>Physical Sciences</topic><topic>Science &amp; Technology</topic><topic>Science &amp; Technology - Other Topics</topic><topic>Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hofer, Sebastian</creatorcontrib><creatorcontrib>Hofer, Andreas</creatorcontrib><creatorcontrib>Simbrunner, Josef</creatorcontrib><creatorcontrib>Ramsey, Michael</creatorcontrib><creatorcontrib>Sterrer, Martin</creatorcontrib><creatorcontrib>Sanzone, Alessandro</creatorcontrib><creatorcontrib>Beverina, Luca</creatorcontrib><creatorcontrib>Geerts, Yves</creatorcontrib><creatorcontrib>Resel, Roland</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hofer, Sebastian</au><au>Hofer, Andreas</au><au>Simbrunner, Josef</au><au>Ramsey, Michael</au><au>Sterrer, Martin</au><au>Sanzone, Alessandro</au><au>Beverina, Luca</au><au>Geerts, Yves</au><au>Resel, Roland</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phase Transition toward a Thermodynamically Less Stable Phase: Cross-Nucleation due to Thin Film Growth of a Benzothieno-benzothiophene Derivative</atitle><jtitle>Journal of physical chemistry. C</jtitle><stitle>J PHYS CHEM C</stitle><date>2021-12-30</date><risdate>2021</risdate><volume>125</volume><issue>51</issue><spage>28039</spage><epage>28047</epage><pages>28039-28047</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>The molecule 2-decyl-7-phenyl-[1]benzothieno-[3,2-b][1]benzothiophene is an organic semiconductor, with outstanding properties in terms of molecular packing and its use in organic electronics. The asymmetric shape of the molecule causes a double layer crystal structure at room temperature. In this work we report its thin film growth by physical vapor deposition starting from the monolayer regime up to thick films. The films are studied in terms of their morphology, crystallographic properties, and thermal stability by atomic force microscopy and X-ray diffraction methods. It is found that the bulk molecular packing of the bilayer is formed at the initial thin film growth stage. After a thickness of one double layer, a transition into a new polymorph is observed which is of metastable character. The new phase represents a single layer phase; the crystal structure could be solved by a combination of X-ray diffraction and molecular dynamics simulations. The observed thin film growth is outstanding in terms of surface crystallization: the formation of a metastable phase is not associated with the initial thin film growth, since the first growth stage represents rather the bulk crystal structure of this molecule. Its formation is associated with cross-nucleation of one polymorph by another, which explains why a metastable phase can be formed on top of a thermodynamically more stable phase.</abstract><cop>WASHINGTON</cop><pub>Amer Chemical Soc</pub><pmid>35003483</pmid><doi>10.1021/acs.jpcc.1c06610</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0079-3525</orcidid><orcidid>https://orcid.org/0000-0002-6450-545X</orcidid><orcidid>https://orcid.org/0000-0001-9089-9061</orcidid><orcidid>https://orcid.org/0000-0002-2660-5767</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2021-12, Vol.125 (51), p.28039-28047
issn 1932-7447
1932-7455
language eng
recordid cdi_webofscience_primary_000756016500015
source ACS Publications; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Chemistry
Chemistry, Physical
Materials Science
Materials Science, Multidisciplinary
Nanoscience & Nanotechnology
Physical Sciences
Science & Technology
Science & Technology - Other Topics
Technology
title Phase Transition toward a Thermodynamically Less Stable Phase: Cross-Nucleation due to Thin Film Growth of a Benzothieno-benzothiophene Derivative
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T11%3A04%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-webofscience&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phase%20Transition%20toward%20a%20Thermodynamically%20Less%20Stable%20Phase:%20Cross-Nucleation%20due%20to%20Thin%20Film%20Growth%20of%20a%20Benzothieno-benzothiophene%20Derivative&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Hofer,%20Sebastian&rft.date=2021-12-30&rft.volume=125&rft.issue=51&rft.spage=28039&rft.epage=28047&rft.pages=28039-28047&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.1c06610&rft_dat=%3Cwebofscience%3E000756016500015%3C/webofscience%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/35003483&rfr_iscdi=true