Symplectic fillings and cobordisms of lens spaces
We complete the classification of symplectic fillings of tight contact structures on lens spaces. In particular, we show that any symplectic filling X of a virtually overtwisted contact structure on L(p,q) has another symplectic structure that fills the universally tight contact structure on L(p,q)....
Gespeichert in:
Veröffentlicht in: | Transactions of the American Mathematical Society 2021-12, Vol.374 (12), p.8813-8867, Article 8813 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We complete the classification of symplectic fillings of tight contact structures on lens spaces. In particular, we show that any symplectic filling X of a virtually overtwisted contact structure on L(p,q) has another symplectic structure that fills the universally tight contact structure on L(p,q). Moreover, we show that the Stein filling of L(p,q) with maximal second homology is given by the plumbing of disk bundles. We also consider the question of constructing symplectic cobordisms between lens spaces and report some partial results. |
---|---|
ISSN: | 0002-9947 1088-6850 |
DOI: | 10.1090/tran/8474 |