Symplectic fillings and cobordisms of lens spaces

We complete the classification of symplectic fillings of tight contact structures on lens spaces. In particular, we show that any symplectic filling X of a virtually overtwisted contact structure on L(p,q) has another symplectic structure that fills the universally tight contact structure on L(p,q)....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of the American Mathematical Society 2021-12, Vol.374 (12), p.8813-8867, Article 8813
Hauptverfasser: Etnyre, John B., Roy, Agniva
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We complete the classification of symplectic fillings of tight contact structures on lens spaces. In particular, we show that any symplectic filling X of a virtually overtwisted contact structure on L(p,q) has another symplectic structure that fills the universally tight contact structure on L(p,q). Moreover, we show that the Stein filling of L(p,q) with maximal second homology is given by the plumbing of disk bundles. We also consider the question of constructing symplectic cobordisms between lens spaces and report some partial results.
ISSN:0002-9947
1088-6850
DOI:10.1090/tran/8474