Deep multimodal learning for municipal solid waste sorting
Automated waste sorting can dramatically increase waste sorting efficiency and reduce its regulation cost. Most of the current methods only use a single modality such as image data or acoustic data for waste classification, which makes it difficult to classify mixed and confusable wastes. In these c...
Gespeichert in:
Veröffentlicht in: | Science China. Technological sciences 2022, Vol.65 (2), p.324-335 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 335 |
---|---|
container_issue | 2 |
container_start_page | 324 |
container_title | Science China. Technological sciences |
container_volume | 65 |
creator | Lu, Gang Wang, YuanBin Xu, HuXiu Yang, HuaYong Zou, Jun |
description | Automated waste sorting can dramatically increase waste sorting efficiency and reduce its regulation cost. Most of the current methods only use a single modality such as image data or acoustic data for waste classification, which makes it difficult to classify mixed and confusable wastes. In these complex situations, using multiple modalities becomes necessary to achieve a high classification accuracy. Traditionally, the fusion of multiple modalities has been limited by fixed handcrafted features. In this study, the deep-learning approach was applied to the multimodal fusion at the feature level for municipal solid-waste sorting. More specifically, the pre-trained VGG16 and one-dimensional convolutional neural networks (1D CNNs) were utilized to extract features from visual data and acoustic data, respectively. These deeply learned features were then fused in the fully connected layers for classification. The results of comparative experiments proved that the proposed method was superior to the single-modality methods. Additionally, the feature-based fusion strategy performed better than the decision-based strategy with deeply learned features. |
doi_str_mv | 10.1007/s11431-021-1927-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000739293200002</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2625578510</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-6e2335c33173e656811520edce96a0bd2980a0218ac864c14090e8407f5e07893</originalsourceid><addsrcrecordid>eNqNkE1LAzEQhhdRsGh_gLeCR1mdSXbz4U3qJxS86Dmk6WxJ2W5qskvx35uyoifBucxkeN6ZyVsUFwjXCCBvEmLFsQSGJWomS31UTFAJnV8Ax7kWsiolZ3haTFPaQA6uNGA1KW7viXaz7dD2fhtWtp21ZGPnu_WsCTH3O-_8LrdTaP1qtrepp1zHPhPnxUlj20TT73xWvD8-vM2fy8Xr08v8blE6jqIvBTHOa8c5Sk6iFgqxZkArR1pYWK6YVmDz6co6JSqHFWggVYFsagKpND8rLse5uxg-Bkq92YQhdnmlYYLVtVQ1QqZwpFwMKUVqzC76rY2fBsEcXDKjSyavMgeXzGHy1ajZ0zI0yXnqHP3oskuSa6Y5OxjGMq3-T899b3sfunkYuj5L2ShNGe_WFH-_8Pd1X3CEiEk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2625578510</pqid></control><display><type>article</type><title>Deep multimodal learning for municipal solid waste sorting</title><source>SpringerNature Journals</source><source>Alma/SFX Local Collection</source><creator>Lu, Gang ; Wang, YuanBin ; Xu, HuXiu ; Yang, HuaYong ; Zou, Jun</creator><creatorcontrib>Lu, Gang ; Wang, YuanBin ; Xu, HuXiu ; Yang, HuaYong ; Zou, Jun</creatorcontrib><description>Automated waste sorting can dramatically increase waste sorting efficiency and reduce its regulation cost. Most of the current methods only use a single modality such as image data or acoustic data for waste classification, which makes it difficult to classify mixed and confusable wastes. In these complex situations, using multiple modalities becomes necessary to achieve a high classification accuracy. Traditionally, the fusion of multiple modalities has been limited by fixed handcrafted features. In this study, the deep-learning approach was applied to the multimodal fusion at the feature level for municipal solid-waste sorting. More specifically, the pre-trained VGG16 and one-dimensional convolutional neural networks (1D CNNs) were utilized to extract features from visual data and acoustic data, respectively. These deeply learned features were then fused in the fully connected layers for classification. The results of comparative experiments proved that the proposed method was superior to the single-modality methods. Additionally, the feature-based fusion strategy performed better than the decision-based strategy with deeply learned features.</description><identifier>ISSN: 1674-7321</identifier><identifier>EISSN: 1869-1900</identifier><identifier>DOI: 10.1007/s11431-021-1927-9</identifier><language>eng</language><publisher>Beijing: Science China Press</publisher><subject>Artificial neural networks ; Deep learning ; Engineering ; Engineering, Multidisciplinary ; Feature extraction ; Image classification ; Machine learning ; Materials Science ; Materials Science, Multidisciplinary ; Municipal waste management ; Science & Technology ; Solid waste management ; Technology</subject><ispartof>Science China. Technological sciences, 2022, Vol.65 (2), p.324-335</ispartof><rights>Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2022</rights><rights>Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>10</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000739293200002</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c316t-6e2335c33173e656811520edce96a0bd2980a0218ac864c14090e8407f5e07893</citedby><cites>FETCH-LOGICAL-c316t-6e2335c33173e656811520edce96a0bd2980a0218ac864c14090e8407f5e07893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11431-021-1927-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11431-021-1927-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27928,27929,41492,42561,51323</link.rule.ids></links><search><creatorcontrib>Lu, Gang</creatorcontrib><creatorcontrib>Wang, YuanBin</creatorcontrib><creatorcontrib>Xu, HuXiu</creatorcontrib><creatorcontrib>Yang, HuaYong</creatorcontrib><creatorcontrib>Zou, Jun</creatorcontrib><title>Deep multimodal learning for municipal solid waste sorting</title><title>Science China. Technological sciences</title><addtitle>Sci. China Technol. Sci</addtitle><addtitle>SCI CHINA TECHNOL SC</addtitle><description>Automated waste sorting can dramatically increase waste sorting efficiency and reduce its regulation cost. Most of the current methods only use a single modality such as image data or acoustic data for waste classification, which makes it difficult to classify mixed and confusable wastes. In these complex situations, using multiple modalities becomes necessary to achieve a high classification accuracy. Traditionally, the fusion of multiple modalities has been limited by fixed handcrafted features. In this study, the deep-learning approach was applied to the multimodal fusion at the feature level for municipal solid-waste sorting. More specifically, the pre-trained VGG16 and one-dimensional convolutional neural networks (1D CNNs) were utilized to extract features from visual data and acoustic data, respectively. These deeply learned features were then fused in the fully connected layers for classification. The results of comparative experiments proved that the proposed method was superior to the single-modality methods. Additionally, the feature-based fusion strategy performed better than the decision-based strategy with deeply learned features.</description><subject>Artificial neural networks</subject><subject>Deep learning</subject><subject>Engineering</subject><subject>Engineering, Multidisciplinary</subject><subject>Feature extraction</subject><subject>Image classification</subject><subject>Machine learning</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>Municipal waste management</subject><subject>Science & Technology</subject><subject>Solid waste management</subject><subject>Technology</subject><issn>1674-7321</issn><issn>1869-1900</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkE1LAzEQhhdRsGh_gLeCR1mdSXbz4U3qJxS86Dmk6WxJ2W5qskvx35uyoifBucxkeN6ZyVsUFwjXCCBvEmLFsQSGJWomS31UTFAJnV8Ax7kWsiolZ3haTFPaQA6uNGA1KW7viXaz7dD2fhtWtp21ZGPnu_WsCTH3O-_8LrdTaP1qtrepp1zHPhPnxUlj20TT73xWvD8-vM2fy8Xr08v8blE6jqIvBTHOa8c5Sk6iFgqxZkArR1pYWK6YVmDz6co6JSqHFWggVYFsagKpND8rLse5uxg-Bkq92YQhdnmlYYLVtVQ1QqZwpFwMKUVqzC76rY2fBsEcXDKjSyavMgeXzGHy1ajZ0zI0yXnqHP3oskuSa6Y5OxjGMq3-T899b3sfunkYuj5L2ShNGe_WFH-_8Pd1X3CEiEk</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Lu, Gang</creator><creator>Wang, YuanBin</creator><creator>Xu, HuXiu</creator><creator>Yang, HuaYong</creator><creator>Zou, Jun</creator><general>Science China Press</general><general>Science Press</general><general>Springer Nature B.V</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2022</creationdate><title>Deep multimodal learning for municipal solid waste sorting</title><author>Lu, Gang ; Wang, YuanBin ; Xu, HuXiu ; Yang, HuaYong ; Zou, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-6e2335c33173e656811520edce96a0bd2980a0218ac864c14090e8407f5e07893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial neural networks</topic><topic>Deep learning</topic><topic>Engineering</topic><topic>Engineering, Multidisciplinary</topic><topic>Feature extraction</topic><topic>Image classification</topic><topic>Machine learning</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>Municipal waste management</topic><topic>Science & Technology</topic><topic>Solid waste management</topic><topic>Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Gang</creatorcontrib><creatorcontrib>Wang, YuanBin</creatorcontrib><creatorcontrib>Xu, HuXiu</creatorcontrib><creatorcontrib>Yang, HuaYong</creatorcontrib><creatorcontrib>Zou, Jun</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><jtitle>Science China. Technological sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Gang</au><au>Wang, YuanBin</au><au>Xu, HuXiu</au><au>Yang, HuaYong</au><au>Zou, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep multimodal learning for municipal solid waste sorting</atitle><jtitle>Science China. Technological sciences</jtitle><stitle>Sci. China Technol. Sci</stitle><stitle>SCI CHINA TECHNOL SC</stitle><date>2022</date><risdate>2022</risdate><volume>65</volume><issue>2</issue><spage>324</spage><epage>335</epage><pages>324-335</pages><issn>1674-7321</issn><eissn>1869-1900</eissn><abstract>Automated waste sorting can dramatically increase waste sorting efficiency and reduce its regulation cost. Most of the current methods only use a single modality such as image data or acoustic data for waste classification, which makes it difficult to classify mixed and confusable wastes. In these complex situations, using multiple modalities becomes necessary to achieve a high classification accuracy. Traditionally, the fusion of multiple modalities has been limited by fixed handcrafted features. In this study, the deep-learning approach was applied to the multimodal fusion at the feature level for municipal solid-waste sorting. More specifically, the pre-trained VGG16 and one-dimensional convolutional neural networks (1D CNNs) were utilized to extract features from visual data and acoustic data, respectively. These deeply learned features were then fused in the fully connected layers for classification. The results of comparative experiments proved that the proposed method was superior to the single-modality methods. Additionally, the feature-based fusion strategy performed better than the decision-based strategy with deeply learned features.</abstract><cop>Beijing</cop><pub>Science China Press</pub><doi>10.1007/s11431-021-1927-9</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1674-7321 |
ispartof | Science China. Technological sciences, 2022, Vol.65 (2), p.324-335 |
issn | 1674-7321 1869-1900 |
language | eng |
recordid | cdi_webofscience_primary_000739293200002 |
source | SpringerNature Journals; Alma/SFX Local Collection |
subjects | Artificial neural networks Deep learning Engineering Engineering, Multidisciplinary Feature extraction Image classification Machine learning Materials Science Materials Science, Multidisciplinary Municipal waste management Science & Technology Solid waste management Technology |
title | Deep multimodal learning for municipal solid waste sorting |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T04%3A01%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20multimodal%20learning%20for%20municipal%20solid%20waste%20sorting&rft.jtitle=Science%20China.%20Technological%20sciences&rft.au=Lu,%20Gang&rft.date=2022&rft.volume=65&rft.issue=2&rft.spage=324&rft.epage=335&rft.pages=324-335&rft.issn=1674-7321&rft.eissn=1869-1900&rft_id=info:doi/10.1007/s11431-021-1927-9&rft_dat=%3Cproquest_webof%3E2625578510%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2625578510&rft_id=info:pmid/&rfr_iscdi=true |