Assessment and Modeling of Plasmonic Photothermal Therapy Delivered via a Fiberoptic Microneedle Device Ex Vivo

Plasmonic photothermal therapy (PPTT) has potential as a superior treatment method for pancreatic cancer, a disease with high mortality partially attributable to the currently non-selective treatment options. PPTT utilizes gold nanoparticles infused into a targeted tissue volume and exposed to a spe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pharmaceutics 2021-12, Vol.13 (12), p.2133, Article 2133
Hauptverfasser: Akhter, Forhad, Manrique-Bedoya, Santiago, Moreau, Chris, Smith, Andrea Lynn, Feng, Yusheng, Mayer, Kathryn M., Hood, R. Lyle
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page 2133
container_title Pharmaceutics
container_volume 13
creator Akhter, Forhad
Manrique-Bedoya, Santiago
Moreau, Chris
Smith, Andrea Lynn
Feng, Yusheng
Mayer, Kathryn M.
Hood, R. Lyle
description Plasmonic photothermal therapy (PPTT) has potential as a superior treatment method for pancreatic cancer, a disease with high mortality partially attributable to the currently non-selective treatment options. PPTT utilizes gold nanoparticles infused into a targeted tissue volume and exposed to a specific light wavelength to induce selective hyperthermia. The current study focuses on developing this approach within an ex vivo porcine pancreas model via an innovative fiberoptic microneedle device (FMD) for co-delivering light and gold nanoparticles. The effects of laser wavelengths (808 vs. 1064 nm), irradiances (20-50 mW center dot mm(-2)), and gold nanorod (GNR) concentrations (0.1-3 nM) on tissue temperature profiles were evaluated to assess and control hyperthermic generation. The GNRs had a peak absorbance at ~800 nm. Results showed that, at 808 nm, photon absorption and subsequent heat generation within tissue without GNRs was 65% less than 1064 nm. The combination of GNRs and 808 nm resulted in a 200% higher temperature rise than the 1064 nm under similar conditions. A computational model was developed to predict the temperature shift and was validated against experimental results with a deviation of
doi_str_mv 10.3390/pharmaceutics13122133
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000736500800001CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_78855d28c858487da0f7657825795ac1</doaj_id><sourcerecordid>2612822609</sourcerecordid><originalsourceid>FETCH-LOGICAL-c505t-359552121600cb33efa7f157ad75ba0a7fa543c2eedaf753d1b9780e8b2824f33</originalsourceid><addsrcrecordid>eNqNkk1v1DAQhiMEolXpTwBZ4oKEFvwRx_YFqVpaqNSKHgrXaOJMdr1K7MVOAv33eNmyahEHfBl_PPPOePQWxUtG3wlh6PvtGuIAFqfR2cQE45wJ8aQ4ZsaYRWm4ePpgf1ScprSheQnBtDDPiyNRGmlKVh4X4SwlTGlAPxLwLbkOLfbOr0joyE0PaQjeWXKzDmMY15iL9uQ2R9jekY8ZnDFiS2YHBMiFazCGbW6JXDsbg0dse8zY7CyS85_km5vDi-JZB33C0_t4Uny9OL9dfl5cffl0uTy7WlhJ5bgQ0kjJGWcVpbYRAjtQHZMKWiUboPkAshSW5xLQKSla1hilKeqGa152QpwUl3vdNsCm3kY3QLyrA7j690WIqxpibrXHWmktZcu11VKXWrVAO1VJpblURoJlWevDXms7NQO2Ns8qQv9I9PGLd-t6FeZaKyqkqLLAm3uBGL5PmMZ6cMli34PHMKWaV0wypqTZ1Xr9F7oJU_R5VDsqf45X1GRK7qk85pQidodmGK13Dqn_6ZCc9-rhTw5Zf_yQAb0HfmATumQdeosHLFtIiUpSqnduYks3wuiCX4bJjzn17f-nil-qatuz</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2612822609</pqid></control><display><type>article</type><title>Assessment and Modeling of Plasmonic Photothermal Therapy Delivered via a Fiberoptic Microneedle Device Ex Vivo</title><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Akhter, Forhad ; Manrique-Bedoya, Santiago ; Moreau, Chris ; Smith, Andrea Lynn ; Feng, Yusheng ; Mayer, Kathryn M. ; Hood, R. Lyle</creator><creatorcontrib>Akhter, Forhad ; Manrique-Bedoya, Santiago ; Moreau, Chris ; Smith, Andrea Lynn ; Feng, Yusheng ; Mayer, Kathryn M. ; Hood, R. Lyle</creatorcontrib><description>Plasmonic photothermal therapy (PPTT) has potential as a superior treatment method for pancreatic cancer, a disease with high mortality partially attributable to the currently non-selective treatment options. PPTT utilizes gold nanoparticles infused into a targeted tissue volume and exposed to a specific light wavelength to induce selective hyperthermia. The current study focuses on developing this approach within an ex vivo porcine pancreas model via an innovative fiberoptic microneedle device (FMD) for co-delivering light and gold nanoparticles. The effects of laser wavelengths (808 vs. 1064 nm), irradiances (20-50 mW center dot mm(-2)), and gold nanorod (GNR) concentrations (0.1-3 nM) on tissue temperature profiles were evaluated to assess and control hyperthermic generation. The GNRs had a peak absorbance at ~800 nm. Results showed that, at 808 nm, photon absorption and subsequent heat generation within tissue without GNRs was 65% less than 1064 nm. The combination of GNRs and 808 nm resulted in a 200% higher temperature rise than the 1064 nm under similar conditions. A computational model was developed to predict the temperature shift and was validated against experimental results with a deviation of &lt;5%. These results show promise for both a predictive model and spatially selective, tunable treatment modality for pancreatic cancer.</description><identifier>ISSN: 1999-4923</identifier><identifier>EISSN: 1999-4923</identifier><identifier>DOI: 10.3390/pharmaceutics13122133</identifier><identifier>PMID: 34959414</identifier><language>eng</language><publisher>BASEL: Mdpi</publisher><subject>Ablation ; Cancer therapies ; COMSOL tissue model ; fiberoptic microneedle ; Gold ; gold nanorods ; Laboratories ; Lasers ; Life Sciences &amp; Biomedicine ; Light ; Nanoparticles ; near infrared ; Optical properties ; Pancreatic cancer ; Pancreatitis ; Pharmacology &amp; Pharmacy ; photothermal ; plasmonic photothermal therapy ; Science &amp; Technology</subject><ispartof>Pharmaceutics, 2021-12, Vol.13 (12), p.2133, Article 2133</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>4</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000736500800001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c505t-359552121600cb33efa7f157ad75ba0a7fa543c2eedaf753d1b9780e8b2824f33</citedby><cites>FETCH-LOGICAL-c505t-359552121600cb33efa7f157ad75ba0a7fa543c2eedaf753d1b9780e8b2824f33</cites><orcidid>0000-0002-9533-8527 ; 0000-0002-5030-1632 ; 0000-0003-0478-2065</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8703536/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8703536/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,2115,27929,27930,39263,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34959414$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Akhter, Forhad</creatorcontrib><creatorcontrib>Manrique-Bedoya, Santiago</creatorcontrib><creatorcontrib>Moreau, Chris</creatorcontrib><creatorcontrib>Smith, Andrea Lynn</creatorcontrib><creatorcontrib>Feng, Yusheng</creatorcontrib><creatorcontrib>Mayer, Kathryn M.</creatorcontrib><creatorcontrib>Hood, R. Lyle</creatorcontrib><title>Assessment and Modeling of Plasmonic Photothermal Therapy Delivered via a Fiberoptic Microneedle Device Ex Vivo</title><title>Pharmaceutics</title><addtitle>PHARMACEUTICS</addtitle><addtitle>Pharmaceutics</addtitle><description>Plasmonic photothermal therapy (PPTT) has potential as a superior treatment method for pancreatic cancer, a disease with high mortality partially attributable to the currently non-selective treatment options. PPTT utilizes gold nanoparticles infused into a targeted tissue volume and exposed to a specific light wavelength to induce selective hyperthermia. The current study focuses on developing this approach within an ex vivo porcine pancreas model via an innovative fiberoptic microneedle device (FMD) for co-delivering light and gold nanoparticles. The effects of laser wavelengths (808 vs. 1064 nm), irradiances (20-50 mW center dot mm(-2)), and gold nanorod (GNR) concentrations (0.1-3 nM) on tissue temperature profiles were evaluated to assess and control hyperthermic generation. The GNRs had a peak absorbance at ~800 nm. Results showed that, at 808 nm, photon absorption and subsequent heat generation within tissue without GNRs was 65% less than 1064 nm. The combination of GNRs and 808 nm resulted in a 200% higher temperature rise than the 1064 nm under similar conditions. A computational model was developed to predict the temperature shift and was validated against experimental results with a deviation of &lt;5%. These results show promise for both a predictive model and spatially selective, tunable treatment modality for pancreatic cancer.</description><subject>Ablation</subject><subject>Cancer therapies</subject><subject>COMSOL tissue model</subject><subject>fiberoptic microneedle</subject><subject>Gold</subject><subject>gold nanorods</subject><subject>Laboratories</subject><subject>Lasers</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Light</subject><subject>Nanoparticles</subject><subject>near infrared</subject><subject>Optical properties</subject><subject>Pancreatic cancer</subject><subject>Pancreatitis</subject><subject>Pharmacology &amp; Pharmacy</subject><subject>photothermal</subject><subject>plasmonic photothermal therapy</subject><subject>Science &amp; Technology</subject><issn>1999-4923</issn><issn>1999-4923</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><sourceid>DOA</sourceid><recordid>eNqNkk1v1DAQhiMEolXpTwBZ4oKEFvwRx_YFqVpaqNSKHgrXaOJMdr1K7MVOAv33eNmyahEHfBl_PPPOePQWxUtG3wlh6PvtGuIAFqfR2cQE45wJ8aQ4ZsaYRWm4ePpgf1ScprSheQnBtDDPiyNRGmlKVh4X4SwlTGlAPxLwLbkOLfbOr0joyE0PaQjeWXKzDmMY15iL9uQ2R9jekY8ZnDFiS2YHBMiFazCGbW6JXDsbg0dse8zY7CyS85_km5vDi-JZB33C0_t4Uny9OL9dfl5cffl0uTy7WlhJ5bgQ0kjJGWcVpbYRAjtQHZMKWiUboPkAshSW5xLQKSla1hilKeqGa152QpwUl3vdNsCm3kY3QLyrA7j690WIqxpibrXHWmktZcu11VKXWrVAO1VJpblURoJlWevDXms7NQO2Ns8qQv9I9PGLd-t6FeZaKyqkqLLAm3uBGL5PmMZ6cMli34PHMKWaV0wypqTZ1Xr9F7oJU_R5VDsqf45X1GRK7qk85pQidodmGK13Dqn_6ZCc9-rhTw5Zf_yQAb0HfmATumQdeosHLFtIiUpSqnduYks3wuiCX4bJjzn17f-nil-qatuz</recordid><startdate>20211210</startdate><enddate>20211210</enddate><creator>Akhter, Forhad</creator><creator>Manrique-Bedoya, Santiago</creator><creator>Moreau, Chris</creator><creator>Smith, Andrea Lynn</creator><creator>Feng, Yusheng</creator><creator>Mayer, Kathryn M.</creator><creator>Hood, R. Lyle</creator><general>Mdpi</general><general>MDPI AG</general><general>MDPI</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9533-8527</orcidid><orcidid>https://orcid.org/0000-0002-5030-1632</orcidid><orcidid>https://orcid.org/0000-0003-0478-2065</orcidid></search><sort><creationdate>20211210</creationdate><title>Assessment and Modeling of Plasmonic Photothermal Therapy Delivered via a Fiberoptic Microneedle Device Ex Vivo</title><author>Akhter, Forhad ; Manrique-Bedoya, Santiago ; Moreau, Chris ; Smith, Andrea Lynn ; Feng, Yusheng ; Mayer, Kathryn M. ; Hood, R. Lyle</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c505t-359552121600cb33efa7f157ad75ba0a7fa543c2eedaf753d1b9780e8b2824f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Ablation</topic><topic>Cancer therapies</topic><topic>COMSOL tissue model</topic><topic>fiberoptic microneedle</topic><topic>Gold</topic><topic>gold nanorods</topic><topic>Laboratories</topic><topic>Lasers</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Light</topic><topic>Nanoparticles</topic><topic>near infrared</topic><topic>Optical properties</topic><topic>Pancreatic cancer</topic><topic>Pancreatitis</topic><topic>Pharmacology &amp; Pharmacy</topic><topic>photothermal</topic><topic>plasmonic photothermal therapy</topic><topic>Science &amp; Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Akhter, Forhad</creatorcontrib><creatorcontrib>Manrique-Bedoya, Santiago</creatorcontrib><creatorcontrib>Moreau, Chris</creatorcontrib><creatorcontrib>Smith, Andrea Lynn</creatorcontrib><creatorcontrib>Feng, Yusheng</creatorcontrib><creatorcontrib>Mayer, Kathryn M.</creatorcontrib><creatorcontrib>Hood, R. Lyle</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Pharmaceutics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Akhter, Forhad</au><au>Manrique-Bedoya, Santiago</au><au>Moreau, Chris</au><au>Smith, Andrea Lynn</au><au>Feng, Yusheng</au><au>Mayer, Kathryn M.</au><au>Hood, R. Lyle</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessment and Modeling of Plasmonic Photothermal Therapy Delivered via a Fiberoptic Microneedle Device Ex Vivo</atitle><jtitle>Pharmaceutics</jtitle><stitle>PHARMACEUTICS</stitle><addtitle>Pharmaceutics</addtitle><date>2021-12-10</date><risdate>2021</risdate><volume>13</volume><issue>12</issue><spage>2133</spage><pages>2133-</pages><artnum>2133</artnum><issn>1999-4923</issn><eissn>1999-4923</eissn><abstract>Plasmonic photothermal therapy (PPTT) has potential as a superior treatment method for pancreatic cancer, a disease with high mortality partially attributable to the currently non-selective treatment options. PPTT utilizes gold nanoparticles infused into a targeted tissue volume and exposed to a specific light wavelength to induce selective hyperthermia. The current study focuses on developing this approach within an ex vivo porcine pancreas model via an innovative fiberoptic microneedle device (FMD) for co-delivering light and gold nanoparticles. The effects of laser wavelengths (808 vs. 1064 nm), irradiances (20-50 mW center dot mm(-2)), and gold nanorod (GNR) concentrations (0.1-3 nM) on tissue temperature profiles were evaluated to assess and control hyperthermic generation. The GNRs had a peak absorbance at ~800 nm. Results showed that, at 808 nm, photon absorption and subsequent heat generation within tissue without GNRs was 65% less than 1064 nm. The combination of GNRs and 808 nm resulted in a 200% higher temperature rise than the 1064 nm under similar conditions. A computational model was developed to predict the temperature shift and was validated against experimental results with a deviation of &lt;5%. These results show promise for both a predictive model and spatially selective, tunable treatment modality for pancreatic cancer.</abstract><cop>BASEL</cop><pub>Mdpi</pub><pmid>34959414</pmid><doi>10.3390/pharmaceutics13122133</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-9533-8527</orcidid><orcidid>https://orcid.org/0000-0002-5030-1632</orcidid><orcidid>https://orcid.org/0000-0003-0478-2065</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1999-4923
ispartof Pharmaceutics, 2021-12, Vol.13 (12), p.2133, Article 2133
issn 1999-4923
1999-4923
language eng
recordid cdi_webofscience_primary_000736500800001CitationCount
source DOAJ Directory of Open Access Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Ablation
Cancer therapies
COMSOL tissue model
fiberoptic microneedle
Gold
gold nanorods
Laboratories
Lasers
Life Sciences & Biomedicine
Light
Nanoparticles
near infrared
Optical properties
Pancreatic cancer
Pancreatitis
Pharmacology & Pharmacy
photothermal
plasmonic photothermal therapy
Science & Technology
title Assessment and Modeling of Plasmonic Photothermal Therapy Delivered via a Fiberoptic Microneedle Device Ex Vivo
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T14%3A49%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessment%20and%20Modeling%20of%20Plasmonic%20Photothermal%20Therapy%20Delivered%20via%20a%20Fiberoptic%20Microneedle%20Device%20Ex%20Vivo&rft.jtitle=Pharmaceutics&rft.au=Akhter,%20Forhad&rft.date=2021-12-10&rft.volume=13&rft.issue=12&rft.spage=2133&rft.pages=2133-&rft.artnum=2133&rft.issn=1999-4923&rft.eissn=1999-4923&rft_id=info:doi/10.3390/pharmaceutics13122133&rft_dat=%3Cproquest_webof%3E2612822609%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2612822609&rft_id=info:pmid/34959414&rft_doaj_id=oai_doaj_org_article_78855d28c858487da0f7657825795ac1&rfr_iscdi=true