Fully Distributed Control for a Class of Uncertain Multi-Agent Systems with a Directed Topology and Unknown State-Dependent Control Coefficients
To address the control of uncertain multi-agent systems (MAS) with completely unknown system nonlinearities and unknown control coefficients, a global consensus method is proposed by constructing novel filters and barrier function-based distributed controllers. The main contributions are as follows....
Gespeichert in:
Veröffentlicht in: | Applied sciences 2021-12, Vol.11 (23), p.11304, Article 11304 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To address the control of uncertain multi-agent systems (MAS) with completely unknown system nonlinearities and unknown control coefficients, a global consensus method is proposed by constructing novel filters and barrier function-based distributed controllers. The main contributions are as follows. Firstly, a novel two-order filter is designed for each agent to produce informational estimates from the leader, such that a connectivity matrix is not used in the controller's design, solving the difficultly caused by the time-varying control coefficients in a MAS with a directed graph. Secondly, combined with the novel filters, barrier functions are used to construct the distributed controller to deal with the completely unknown system nonlinearities, resulting in the global consensus of the MAS. Finally, it is rigorously proved that the consensus of the MAS is achieved while guaranteeing the prescribed tracking-error performance. Two examples are given to verify the effectiveness of the proposed method, in which the simulation results demonstrate the claims. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app112311304 |