Surface Properties of Polymer Resins Fabricated with Subtractive and Additive Manufacturing Techniques

This study aimed to compare the surface roughness, hardness, and flexure strength of interim indirect resin restorations fabricated with CAD-CAM (CC), 3D printing (3D), and conventional techniques (CV). Twenty disk (3 mm x o10 mm) and ten bar specimens (25 x 2 x 2 mm) were fabricated for the CC, 3D,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymers 2021-11, Vol.13 (23), p.4077, Article 4077
Hauptverfasser: Al-Qahtani, Amal S., Tulbah, Huda I., Binhasan, Mashael, Abbasi, Maria S., Ahmed, Naseer, Shabib, Sara, Farooq, Imran, Aldahian, Nada, Nisar, Sidra S., Tanveer, Syeda A., Vohra, Fahim, Abduljabbar, Tariq
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 23
container_start_page 4077
container_title Polymers
container_volume 13
creator Al-Qahtani, Amal S.
Tulbah, Huda I.
Binhasan, Mashael
Abbasi, Maria S.
Ahmed, Naseer
Shabib, Sara
Farooq, Imran
Aldahian, Nada
Nisar, Sidra S.
Tanveer, Syeda A.
Vohra, Fahim
Abduljabbar, Tariq
description This study aimed to compare the surface roughness, hardness, and flexure strength of interim indirect resin restorations fabricated with CAD-CAM (CC), 3D printing (3D), and conventional techniques (CV). Twenty disk (3 mm x o10 mm) and ten bar specimens (25 x 2 x 2 mm) were fabricated for the CC, 3D, and CV groups, to be used for surface roughness, micro-hardness, and flexural strength testing using standardized protocol. Three indentations for Vickers micro-hardness (VHN) were performed on each disk and an average was identified for each specimen. Surface micro-roughness (Ra) was calculated in micrometers (mu m) using a 3D optical non-contact surface microscope. A three-point bending test with a universal testing machine was utilized for assessing flexural strength. The load was applied at a crosshead speed of 3 mm/min over a distance of 25 mm until fracture. Means and standard deviations were compared using ANOVA and post hoc Tukey-Kramer tests, and a p-value of 0.05). However, 3D showed significantly higher Ra compared to CC and CV samples (p < 0.05). Micro-hardness was significantly higher in 3D samples (p < 0.05) compared to CC and CV specimens. In addition, CC and CV showed comparable micro-hardness (p > 0.05). A significant difference in flexural strength was observed among the study groups (p < 0.05). CC and 3D showed comparable strength outcomes (p > 0.05), although CV specimens showed significantly lower (p < 0.05) strength compared to CC and 3D samples. The 3D-printed provisional restorative resins showed flexural strength and micro-hardness comparable to CAD-CAM fabricated specimens, and surface micro-roughness for printed specimens was considerably higher compared to CAD-CAM and conventional fabrication techniques.
doi_str_mv 10.3390/polym13234077
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000734527000001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2608121136</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-5fa23b24abaca0557c4fd40d4de1453f34f2bace4778a84ffc7ba5ac41dee8663</originalsourceid><addsrcrecordid>eNqNkc1LHTEUxYdSqaIuuy2Bbgpl2mSSTOKmII_6AZZKteuQydz4IvOS13wo_vdmfPahXTWbm8v93cO5nKZ5T_AXSo_w13WYHlaEdpRhId40ex0WtGW0x29f_Hebw5RucX2M9z0R75pdyqSkXJK9xl6VaLUBdBnDGmJ2kFCw6HIWhoh-QXI-oRM9RGd0hhHdu7xEV2XIUZvs7gBpP6LjcXRPzQ_tS5XLJTp_g67BLL37UyAdNDtWTwkOn-t-8_vk-_XirL34eXq-OL5oDSM8t9zqjg4d04M2GnMuDLMjwyMbgTBOLWW2qyNgQkgtmbVGDJrrujwCyL6n-823je66DCsYDfjqc1Lr6FY6PqignXo98W6pbsKdkj2XRz2uAp-eBWKYjWe1csnANGkPoSTV9Vhy2nMhKvrxH_Q2lOjreU8U6Qihs6N2Q5kYUopgt2YIVnOI6lWIlf_w8oIt_TeyCnzeAPcwBJuMA29gi9WUBWW8E3PeeKbl_9MLl3V2wS9C8Zk-AkAhvBI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2608121136</pqid></control><display><type>article</type><title>Surface Properties of Polymer Resins Fabricated with Subtractive and Additive Manufacturing Techniques</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central (Open access)</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>EZB Electronic Journals Library</source><source>PubMed Central Open Access</source><creator>Al-Qahtani, Amal S. ; Tulbah, Huda I. ; Binhasan, Mashael ; Abbasi, Maria S. ; Ahmed, Naseer ; Shabib, Sara ; Farooq, Imran ; Aldahian, Nada ; Nisar, Sidra S. ; Tanveer, Syeda A. ; Vohra, Fahim ; Abduljabbar, Tariq</creator><creatorcontrib>Al-Qahtani, Amal S. ; Tulbah, Huda I. ; Binhasan, Mashael ; Abbasi, Maria S. ; Ahmed, Naseer ; Shabib, Sara ; Farooq, Imran ; Aldahian, Nada ; Nisar, Sidra S. ; Tanveer, Syeda A. ; Vohra, Fahim ; Abduljabbar, Tariq</creatorcontrib><description><![CDATA[This study aimed to compare the surface roughness, hardness, and flexure strength of interim indirect resin restorations fabricated with CAD-CAM (CC), 3D printing (3D), and conventional techniques (CV). Twenty disk (3 mm x o10 mm) and ten bar specimens (25 x 2 x 2 mm) were fabricated for the CC, 3D, and CV groups, to be used for surface roughness, micro-hardness, and flexural strength testing using standardized protocol. Three indentations for Vickers micro-hardness (VHN) were performed on each disk and an average was identified for each specimen. Surface micro-roughness (Ra) was calculated in micrometers (mu m) using a 3D optical non-contact surface microscope. A three-point bending test with a universal testing machine was utilized for assessing flexural strength. The load was applied at a crosshead speed of 3 mm/min over a distance of 25 mm until fracture. Means and standard deviations were compared using ANOVA and post hoc Tukey-Kramer tests, and a p-value of <= 0.05 was considered statistically significant. Ra was significantly different among the study groups (p < 0.05). Surface roughness among the CC and CV groups was statistically comparable (p > 0.05). However, 3D showed significantly higher Ra compared to CC and CV samples (p < 0.05). Micro-hardness was significantly higher in 3D samples (p < 0.05) compared to CC and CV specimens. In addition, CC and CV showed comparable micro-hardness (p > 0.05). A significant difference in flexural strength was observed among the study groups (p < 0.05). CC and 3D showed comparable strength outcomes (p > 0.05), although CV specimens showed significantly lower (p < 0.05) strength compared to CC and 3D samples. The 3D-printed provisional restorative resins showed flexural strength and micro-hardness comparable to CAD-CAM fabricated specimens, and surface micro-roughness for printed specimens was considerably higher compared to CAD-CAM and conventional fabrication techniques.]]></description><identifier>ISSN: 2073-4360</identifier><identifier>EISSN: 2073-4360</identifier><identifier>DOI: 10.3390/polym13234077</identifier><identifier>PMID: 34883581</identifier><language>eng</language><publisher>BASEL: Mdpi</publisher><subject>3-D printers ; Bending machines ; CAD/CAM ; Deformation ; Flexing ; Flexural strength ; Load ; Manufacturing ; Mechanical properties ; Micrometers ; Modulus of rupture in bending ; Physical Sciences ; Polymer Science ; Prostheses ; Resins ; Samples ; Science &amp; Technology ; Software ; Statistical methods ; Strength testing ; Surface properties ; Surface roughness ; Three dimensional printing ; Transplants &amp; implants</subject><ispartof>Polymers, 2021-11, Vol.13 (23), p.4077, Article 4077</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>28</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000734527000001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c415t-5fa23b24abaca0557c4fd40d4de1453f34f2bace4778a84ffc7ba5ac41dee8663</citedby><cites>FETCH-LOGICAL-c415t-5fa23b24abaca0557c4fd40d4de1453f34f2bace4778a84ffc7ba5ac41dee8663</cites><orcidid>0000-0002-0116-7449 ; 0000-0002-4891-2522 ; 0000-0002-4682-3163 ; 0000-0003-2050-0988 ; 0000-0002-0960-1123 ; 0000-0001-7266-5886</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8658960/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8658960/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,886,27929,27930,39263,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34883581$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Al-Qahtani, Amal S.</creatorcontrib><creatorcontrib>Tulbah, Huda I.</creatorcontrib><creatorcontrib>Binhasan, Mashael</creatorcontrib><creatorcontrib>Abbasi, Maria S.</creatorcontrib><creatorcontrib>Ahmed, Naseer</creatorcontrib><creatorcontrib>Shabib, Sara</creatorcontrib><creatorcontrib>Farooq, Imran</creatorcontrib><creatorcontrib>Aldahian, Nada</creatorcontrib><creatorcontrib>Nisar, Sidra S.</creatorcontrib><creatorcontrib>Tanveer, Syeda A.</creatorcontrib><creatorcontrib>Vohra, Fahim</creatorcontrib><creatorcontrib>Abduljabbar, Tariq</creatorcontrib><title>Surface Properties of Polymer Resins Fabricated with Subtractive and Additive Manufacturing Techniques</title><title>Polymers</title><addtitle>POLYMERS-BASEL</addtitle><addtitle>Polymers (Basel)</addtitle><description><![CDATA[This study aimed to compare the surface roughness, hardness, and flexure strength of interim indirect resin restorations fabricated with CAD-CAM (CC), 3D printing (3D), and conventional techniques (CV). Twenty disk (3 mm x o10 mm) and ten bar specimens (25 x 2 x 2 mm) were fabricated for the CC, 3D, and CV groups, to be used for surface roughness, micro-hardness, and flexural strength testing using standardized protocol. Three indentations for Vickers micro-hardness (VHN) were performed on each disk and an average was identified for each specimen. Surface micro-roughness (Ra) was calculated in micrometers (mu m) using a 3D optical non-contact surface microscope. A three-point bending test with a universal testing machine was utilized for assessing flexural strength. The load was applied at a crosshead speed of 3 mm/min over a distance of 25 mm until fracture. Means and standard deviations were compared using ANOVA and post hoc Tukey-Kramer tests, and a p-value of <= 0.05 was considered statistically significant. Ra was significantly different among the study groups (p < 0.05). Surface roughness among the CC and CV groups was statistically comparable (p > 0.05). However, 3D showed significantly higher Ra compared to CC and CV samples (p < 0.05). Micro-hardness was significantly higher in 3D samples (p < 0.05) compared to CC and CV specimens. In addition, CC and CV showed comparable micro-hardness (p > 0.05). A significant difference in flexural strength was observed among the study groups (p < 0.05). CC and 3D showed comparable strength outcomes (p > 0.05), although CV specimens showed significantly lower (p < 0.05) strength compared to CC and 3D samples. The 3D-printed provisional restorative resins showed flexural strength and micro-hardness comparable to CAD-CAM fabricated specimens, and surface micro-roughness for printed specimens was considerably higher compared to CAD-CAM and conventional fabrication techniques.]]></description><subject>3-D printers</subject><subject>Bending machines</subject><subject>CAD/CAM</subject><subject>Deformation</subject><subject>Flexing</subject><subject>Flexural strength</subject><subject>Load</subject><subject>Manufacturing</subject><subject>Mechanical properties</subject><subject>Micrometers</subject><subject>Modulus of rupture in bending</subject><subject>Physical Sciences</subject><subject>Polymer Science</subject><subject>Prostheses</subject><subject>Resins</subject><subject>Samples</subject><subject>Science &amp; Technology</subject><subject>Software</subject><subject>Statistical methods</subject><subject>Strength testing</subject><subject>Surface properties</subject><subject>Surface roughness</subject><subject>Three dimensional printing</subject><subject>Transplants &amp; implants</subject><issn>2073-4360</issn><issn>2073-4360</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNkc1LHTEUxYdSqaIuuy2Bbgpl2mSSTOKmII_6AZZKteuQydz4IvOS13wo_vdmfPahXTWbm8v93cO5nKZ5T_AXSo_w13WYHlaEdpRhId40ex0WtGW0x29f_Hebw5RucX2M9z0R75pdyqSkXJK9xl6VaLUBdBnDGmJ2kFCw6HIWhoh-QXI-oRM9RGd0hhHdu7xEV2XIUZvs7gBpP6LjcXRPzQ_tS5XLJTp_g67BLL37UyAdNDtWTwkOn-t-8_vk-_XirL34eXq-OL5oDSM8t9zqjg4d04M2GnMuDLMjwyMbgTBOLWW2qyNgQkgtmbVGDJrrujwCyL6n-823je66DCsYDfjqc1Lr6FY6PqignXo98W6pbsKdkj2XRz2uAp-eBWKYjWe1csnANGkPoSTV9Vhy2nMhKvrxH_Q2lOjreU8U6Qihs6N2Q5kYUopgt2YIVnOI6lWIlf_w8oIt_TeyCnzeAPcwBJuMA29gi9WUBWW8E3PeeKbl_9MLl3V2wS9C8Zk-AkAhvBI</recordid><startdate>20211124</startdate><enddate>20211124</enddate><creator>Al-Qahtani, Amal S.</creator><creator>Tulbah, Huda I.</creator><creator>Binhasan, Mashael</creator><creator>Abbasi, Maria S.</creator><creator>Ahmed, Naseer</creator><creator>Shabib, Sara</creator><creator>Farooq, Imran</creator><creator>Aldahian, Nada</creator><creator>Nisar, Sidra S.</creator><creator>Tanveer, Syeda A.</creator><creator>Vohra, Fahim</creator><creator>Abduljabbar, Tariq</creator><general>Mdpi</general><general>MDPI AG</general><general>MDPI</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0116-7449</orcidid><orcidid>https://orcid.org/0000-0002-4891-2522</orcidid><orcidid>https://orcid.org/0000-0002-4682-3163</orcidid><orcidid>https://orcid.org/0000-0003-2050-0988</orcidid><orcidid>https://orcid.org/0000-0002-0960-1123</orcidid><orcidid>https://orcid.org/0000-0001-7266-5886</orcidid></search><sort><creationdate>20211124</creationdate><title>Surface Properties of Polymer Resins Fabricated with Subtractive and Additive Manufacturing Techniques</title><author>Al-Qahtani, Amal S. ; Tulbah, Huda I. ; Binhasan, Mashael ; Abbasi, Maria S. ; Ahmed, Naseer ; Shabib, Sara ; Farooq, Imran ; Aldahian, Nada ; Nisar, Sidra S. ; Tanveer, Syeda A. ; Vohra, Fahim ; Abduljabbar, Tariq</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-5fa23b24abaca0557c4fd40d4de1453f34f2bace4778a84ffc7ba5ac41dee8663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>3-D printers</topic><topic>Bending machines</topic><topic>CAD/CAM</topic><topic>Deformation</topic><topic>Flexing</topic><topic>Flexural strength</topic><topic>Load</topic><topic>Manufacturing</topic><topic>Mechanical properties</topic><topic>Micrometers</topic><topic>Modulus of rupture in bending</topic><topic>Physical Sciences</topic><topic>Polymer Science</topic><topic>Prostheses</topic><topic>Resins</topic><topic>Samples</topic><topic>Science &amp; Technology</topic><topic>Software</topic><topic>Statistical methods</topic><topic>Strength testing</topic><topic>Surface properties</topic><topic>Surface roughness</topic><topic>Three dimensional printing</topic><topic>Transplants &amp; implants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Al-Qahtani, Amal S.</creatorcontrib><creatorcontrib>Tulbah, Huda I.</creatorcontrib><creatorcontrib>Binhasan, Mashael</creatorcontrib><creatorcontrib>Abbasi, Maria S.</creatorcontrib><creatorcontrib>Ahmed, Naseer</creatorcontrib><creatorcontrib>Shabib, Sara</creatorcontrib><creatorcontrib>Farooq, Imran</creatorcontrib><creatorcontrib>Aldahian, Nada</creatorcontrib><creatorcontrib>Nisar, Sidra S.</creatorcontrib><creatorcontrib>Tanveer, Syeda A.</creatorcontrib><creatorcontrib>Vohra, Fahim</creatorcontrib><creatorcontrib>Abduljabbar, Tariq</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>https://resources.nclive.org/materials</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Al-Qahtani, Amal S.</au><au>Tulbah, Huda I.</au><au>Binhasan, Mashael</au><au>Abbasi, Maria S.</au><au>Ahmed, Naseer</au><au>Shabib, Sara</au><au>Farooq, Imran</au><au>Aldahian, Nada</au><au>Nisar, Sidra S.</au><au>Tanveer, Syeda A.</au><au>Vohra, Fahim</au><au>Abduljabbar, Tariq</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface Properties of Polymer Resins Fabricated with Subtractive and Additive Manufacturing Techniques</atitle><jtitle>Polymers</jtitle><stitle>POLYMERS-BASEL</stitle><addtitle>Polymers (Basel)</addtitle><date>2021-11-24</date><risdate>2021</risdate><volume>13</volume><issue>23</issue><spage>4077</spage><pages>4077-</pages><artnum>4077</artnum><issn>2073-4360</issn><eissn>2073-4360</eissn><abstract><![CDATA[This study aimed to compare the surface roughness, hardness, and flexure strength of interim indirect resin restorations fabricated with CAD-CAM (CC), 3D printing (3D), and conventional techniques (CV). Twenty disk (3 mm x o10 mm) and ten bar specimens (25 x 2 x 2 mm) were fabricated for the CC, 3D, and CV groups, to be used for surface roughness, micro-hardness, and flexural strength testing using standardized protocol. Three indentations for Vickers micro-hardness (VHN) were performed on each disk and an average was identified for each specimen. Surface micro-roughness (Ra) was calculated in micrometers (mu m) using a 3D optical non-contact surface microscope. A three-point bending test with a universal testing machine was utilized for assessing flexural strength. The load was applied at a crosshead speed of 3 mm/min over a distance of 25 mm until fracture. Means and standard deviations were compared using ANOVA and post hoc Tukey-Kramer tests, and a p-value of <= 0.05 was considered statistically significant. Ra was significantly different among the study groups (p < 0.05). Surface roughness among the CC and CV groups was statistically comparable (p > 0.05). However, 3D showed significantly higher Ra compared to CC and CV samples (p < 0.05). Micro-hardness was significantly higher in 3D samples (p < 0.05) compared to CC and CV specimens. In addition, CC and CV showed comparable micro-hardness (p > 0.05). A significant difference in flexural strength was observed among the study groups (p < 0.05). CC and 3D showed comparable strength outcomes (p > 0.05), although CV specimens showed significantly lower (p < 0.05) strength compared to CC and 3D samples. The 3D-printed provisional restorative resins showed flexural strength and micro-hardness comparable to CAD-CAM fabricated specimens, and surface micro-roughness for printed specimens was considerably higher compared to CAD-CAM and conventional fabrication techniques.]]></abstract><cop>BASEL</cop><pub>Mdpi</pub><pmid>34883581</pmid><doi>10.3390/polym13234077</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-0116-7449</orcidid><orcidid>https://orcid.org/0000-0002-4891-2522</orcidid><orcidid>https://orcid.org/0000-0002-4682-3163</orcidid><orcidid>https://orcid.org/0000-0003-2050-0988</orcidid><orcidid>https://orcid.org/0000-0002-0960-1123</orcidid><orcidid>https://orcid.org/0000-0001-7266-5886</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4360
ispartof Polymers, 2021-11, Vol.13 (23), p.4077, Article 4077
issn 2073-4360
2073-4360
language eng
recordid cdi_webofscience_primary_000734527000001
source MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central (Open access); Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB Electronic Journals Library; PubMed Central Open Access
subjects 3-D printers
Bending machines
CAD/CAM
Deformation
Flexing
Flexural strength
Load
Manufacturing
Mechanical properties
Micrometers
Modulus of rupture in bending
Physical Sciences
Polymer Science
Prostheses
Resins
Samples
Science & Technology
Software
Statistical methods
Strength testing
Surface properties
Surface roughness
Three dimensional printing
Transplants & implants
title Surface Properties of Polymer Resins Fabricated with Subtractive and Additive Manufacturing Techniques
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T18%3A44%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface%20Properties%20of%20Polymer%20Resins%20Fabricated%20with%20Subtractive%20and%20Additive%20Manufacturing%20Techniques&rft.jtitle=Polymers&rft.au=Al-Qahtani,%20Amal%20S.&rft.date=2021-11-24&rft.volume=13&rft.issue=23&rft.spage=4077&rft.pages=4077-&rft.artnum=4077&rft.issn=2073-4360&rft.eissn=2073-4360&rft_id=info:doi/10.3390/polym13234077&rft_dat=%3Cproquest_webof%3E2608121136%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2608121136&rft_id=info:pmid/34883581&rfr_iscdi=true