Targeting CK2 mediated signaling to impair/tackle SARS-CoV-2 infection: a computational biology approach

Background Similarities in the hijacking mechanisms used by SARS-CoV-2 and several types of cancer, suggest the repurposing of cancer drugs to treat Covid-19. CK2 kinase antagonists have been proposed for cancer treatment. A recent study in cells infected with SARS-CoV-2 found a significant CK2 kina...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular Medicine 2021-12, Vol.27 (1), p.161-18, Article 161
Hauptverfasser: Miranda, Jamilet, Bringas, Ricardo, Fernandez-de-Cossio, Jorge, Perera-Negrin, Yasser
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18
container_issue 1
container_start_page 161
container_title Molecular Medicine
container_volume 27
creator Miranda, Jamilet
Bringas, Ricardo
Fernandez-de-Cossio, Jorge
Perera-Negrin, Yasser
description Background Similarities in the hijacking mechanisms used by SARS-CoV-2 and several types of cancer, suggest the repurposing of cancer drugs to treat Covid-19. CK2 kinase antagonists have been proposed for cancer treatment. A recent study in cells infected with SARS-CoV-2 found a significant CK2 kinase activity, and the use of a CK2 inhibitor showed antiviral responses. CIGB-300, originally designed as an anticancer peptide, is an antagonist of CK2 kinase activity that binds to the CK2 phospho-acceptor sites. Recent preliminary results show the antiviral activity of CIGB-300 using a surrogate model of coronavirus. Here we present a computational biology study that provides evidence, at the molecular level, of how CIGB-300 may interfere with the SARS-CoV-2 life cycle within infected human cells. Methods Sequence analyses and data from phosphorylation studies were combined to predict infection-induced molecular mechanisms that can be interfered by CIGB-300. Next, we integrated data from multi-omics studies and data focusing on the antagonistic effect on the CK2 kinase activity of CIGB-300. A combination of network and functional enrichment analyses was used. Results Firstly, from the SARS-CoV studies, we inferred the potential incidence of CIGB-300 in SARS-CoV-2 interference on the immune response. Afterwards, from the analysis of multiple omics data, we proposed the action of CIGB-300 from the early stages of viral infections perturbing the virus hijacking of RNA splicing machinery. We also predicted the interference of CIGB-300 in virus-host interactions that are responsible for the high infectivity and the particular immune response to SARS-CoV-2 infection. Furthermore, we provided evidence of how CIGB-300 may participate in the attenuation of phenotypes related to muscle, bleeding, coagulation and respiratory disorders. Conclusions Our computational analysis proposes putative molecular mechanisms that support the antiviral activity of CIGB-300.
doi_str_mv 10.1186/s10020-021-00424-x
format Article
fullrecord <record><control><sourceid>gale_webof</sourceid><recordid>TN_cdi_webofscience_primary_000732948000003CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A693673704</galeid><doaj_id>oai_doaj_org_article_fdb63a603f3242458f3bfe1cc3cb8069</doaj_id><sourcerecordid>A693673704</sourcerecordid><originalsourceid>FETCH-LOGICAL-c635t-60bcde2293dc3d5f776cb5cb7323ff7c908a58df16dfeb9d88590411d5934d6d3</originalsourceid><addsrcrecordid>eNqNUU1v1DAUjBCIfsAf4IByR26f7dhxOCCtIigVlZBo4Wo5_si6ZOPI8Zb23-M0sKI3_A62n2fmWTNF8QbDGcaCn88YgAACghFARSp0_6w4xowIRDkTz_MZao4wY_ioOJnn24zGrGIviyNaNRQwsONie6Nib5Mf-7L9QsqdNV4la8rZ96MalnYKpd9NysfzpPTPwZbXm2_XqA0_ECn96KxOPozvS1XqsJv2SS1XNZSdD0PoH0o1TTEovX1VvHBqmO3rP_tp8f3Tx5v2M7r6enHZbq6Q5pQlxKHTxhLSUKOpYa6uue6Y7mpKqHO1bkAoJozD3DjbNUYI1kCFsWENrQw39LS4XHVNULdyin6n4oMMysvHRoi9VDF5PVjpTMep4kAdJdk-JhztnMVaU90J4E3W-rBqTfsuO6PtmKIanog-fRn9VvbhTgqeCxaBs1WgV3leditkmM5l7M7rMFrnc3-TR_Ga1lBlAlkJOoZ5jtYdhmGQS-hyDV3mKOVj6PI-k97--80D5W_KGfBuBfyyXXCz9nbU9gADgOxuUwlYFs1o8f_o1q-Jt2E_JvobwfPKLA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Targeting CK2 mediated signaling to impair/tackle SARS-CoV-2 infection: a computational biology approach</title><source>MEDLINE</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Springer Nature OA/Free Journals</source><source>SpringerLink Journals - AutoHoldings</source><source>DOAJ开放获取期刊资源库</source><creator>Miranda, Jamilet ; Bringas, Ricardo ; Fernandez-de-Cossio, Jorge ; Perera-Negrin, Yasser</creator><creatorcontrib>Miranda, Jamilet ; Bringas, Ricardo ; Fernandez-de-Cossio, Jorge ; Perera-Negrin, Yasser</creatorcontrib><description>Background Similarities in the hijacking mechanisms used by SARS-CoV-2 and several types of cancer, suggest the repurposing of cancer drugs to treat Covid-19. CK2 kinase antagonists have been proposed for cancer treatment. A recent study in cells infected with SARS-CoV-2 found a significant CK2 kinase activity, and the use of a CK2 inhibitor showed antiviral responses. CIGB-300, originally designed as an anticancer peptide, is an antagonist of CK2 kinase activity that binds to the CK2 phospho-acceptor sites. Recent preliminary results show the antiviral activity of CIGB-300 using a surrogate model of coronavirus. Here we present a computational biology study that provides evidence, at the molecular level, of how CIGB-300 may interfere with the SARS-CoV-2 life cycle within infected human cells. Methods Sequence analyses and data from phosphorylation studies were combined to predict infection-induced molecular mechanisms that can be interfered by CIGB-300. Next, we integrated data from multi-omics studies and data focusing on the antagonistic effect on the CK2 kinase activity of CIGB-300. A combination of network and functional enrichment analyses was used. Results Firstly, from the SARS-CoV studies, we inferred the potential incidence of CIGB-300 in SARS-CoV-2 interference on the immune response. Afterwards, from the analysis of multiple omics data, we proposed the action of CIGB-300 from the early stages of viral infections perturbing the virus hijacking of RNA splicing machinery. We also predicted the interference of CIGB-300 in virus-host interactions that are responsible for the high infectivity and the particular immune response to SARS-CoV-2 infection. Furthermore, we provided evidence of how CIGB-300 may participate in the attenuation of phenotypes related to muscle, bleeding, coagulation and respiratory disorders. Conclusions Our computational analysis proposes putative molecular mechanisms that support the antiviral activity of CIGB-300.</description><identifier>ISSN: 1076-1551</identifier><identifier>EISSN: 1528-3658</identifier><identifier>DOI: 10.1186/s10020-021-00424-x</identifier><identifier>PMID: 34930105</identifier><language>eng</language><publisher>NEW YORK: Springer Nature</publisher><subject>Analysis ; Animals ; Antiviral agents ; Biochemistry &amp; Molecular Biology ; Caco-2 Cells ; Cancer ; Care and treatment ; Cell Biology ; Cells ; Chlorocebus aethiops ; CIGB-300 ; CK2 inhibitor ; Computational biology ; Computational Biology - methods ; Coronaviruses ; COVID-19 - metabolism ; COVID-19 Drug Treatment ; Drug repurposing ; Health aspects ; Humans ; Life Sciences &amp; Biomedicine ; Medical research ; Medicine, Experimental ; Medicine, Research &amp; Experimental ; Nuclear Pore Complex Proteins - therapeutic use ; Peptides, Cyclic - therapeutic use ; Phosphoproteomics ; Research &amp; Experimental Medicine ; SARS-CoV-2 ; SARS-CoV-2 - drug effects ; SARS-CoV-2 - pathogenicity ; Science &amp; Technology ; Vero Cells ; Virus diseases</subject><ispartof>Molecular Medicine, 2021-12, Vol.27 (1), p.161-18, Article 161</ispartof><rights>2021. The Author(s).</rights><rights>COPYRIGHT 2021 Springer</rights><rights>The Author(s) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>9</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000732948000003</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c635t-60bcde2293dc3d5f776cb5cb7323ff7c908a58df16dfeb9d88590411d5934d6d3</citedby><cites>FETCH-LOGICAL-c635t-60bcde2293dc3d5f776cb5cb7323ff7c908a58df16dfeb9d88590411d5934d6d3</cites><orcidid>0000-0002-9601-1745 ; 0000-0001-9046-8181 ; 0000-0001-8696-1416</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8686809/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8686809/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,2115,27929,27930,39263,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34930105$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Miranda, Jamilet</creatorcontrib><creatorcontrib>Bringas, Ricardo</creatorcontrib><creatorcontrib>Fernandez-de-Cossio, Jorge</creatorcontrib><creatorcontrib>Perera-Negrin, Yasser</creatorcontrib><title>Targeting CK2 mediated signaling to impair/tackle SARS-CoV-2 infection: a computational biology approach</title><title>Molecular Medicine</title><addtitle>MOL MED</addtitle><addtitle>Mol Med</addtitle><description>Background Similarities in the hijacking mechanisms used by SARS-CoV-2 and several types of cancer, suggest the repurposing of cancer drugs to treat Covid-19. CK2 kinase antagonists have been proposed for cancer treatment. A recent study in cells infected with SARS-CoV-2 found a significant CK2 kinase activity, and the use of a CK2 inhibitor showed antiviral responses. CIGB-300, originally designed as an anticancer peptide, is an antagonist of CK2 kinase activity that binds to the CK2 phospho-acceptor sites. Recent preliminary results show the antiviral activity of CIGB-300 using a surrogate model of coronavirus. Here we present a computational biology study that provides evidence, at the molecular level, of how CIGB-300 may interfere with the SARS-CoV-2 life cycle within infected human cells. Methods Sequence analyses and data from phosphorylation studies were combined to predict infection-induced molecular mechanisms that can be interfered by CIGB-300. Next, we integrated data from multi-omics studies and data focusing on the antagonistic effect on the CK2 kinase activity of CIGB-300. A combination of network and functional enrichment analyses was used. Results Firstly, from the SARS-CoV studies, we inferred the potential incidence of CIGB-300 in SARS-CoV-2 interference on the immune response. Afterwards, from the analysis of multiple omics data, we proposed the action of CIGB-300 from the early stages of viral infections perturbing the virus hijacking of RNA splicing machinery. We also predicted the interference of CIGB-300 in virus-host interactions that are responsible for the high infectivity and the particular immune response to SARS-CoV-2 infection. Furthermore, we provided evidence of how CIGB-300 may participate in the attenuation of phenotypes related to muscle, bleeding, coagulation and respiratory disorders. Conclusions Our computational analysis proposes putative molecular mechanisms that support the antiviral activity of CIGB-300.</description><subject>Analysis</subject><subject>Animals</subject><subject>Antiviral agents</subject><subject>Biochemistry &amp; Molecular Biology</subject><subject>Caco-2 Cells</subject><subject>Cancer</subject><subject>Care and treatment</subject><subject>Cell Biology</subject><subject>Cells</subject><subject>Chlorocebus aethiops</subject><subject>CIGB-300</subject><subject>CK2 inhibitor</subject><subject>Computational biology</subject><subject>Computational Biology - methods</subject><subject>Coronaviruses</subject><subject>COVID-19 - metabolism</subject><subject>COVID-19 Drug Treatment</subject><subject>Drug repurposing</subject><subject>Health aspects</subject><subject>Humans</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Medical research</subject><subject>Medicine, Experimental</subject><subject>Medicine, Research &amp; Experimental</subject><subject>Nuclear Pore Complex Proteins - therapeutic use</subject><subject>Peptides, Cyclic - therapeutic use</subject><subject>Phosphoproteomics</subject><subject>Research &amp; Experimental Medicine</subject><subject>SARS-CoV-2</subject><subject>SARS-CoV-2 - drug effects</subject><subject>SARS-CoV-2 - pathogenicity</subject><subject>Science &amp; Technology</subject><subject>Vero Cells</subject><subject>Virus diseases</subject><issn>1076-1551</issn><issn>1528-3658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNqNUU1v1DAUjBCIfsAf4IByR26f7dhxOCCtIigVlZBo4Wo5_si6ZOPI8Zb23-M0sKI3_A62n2fmWTNF8QbDGcaCn88YgAACghFARSp0_6w4xowIRDkTz_MZao4wY_ioOJnn24zGrGIviyNaNRQwsONie6Nib5Mf-7L9QsqdNV4la8rZ96MalnYKpd9NysfzpPTPwZbXm2_XqA0_ECn96KxOPozvS1XqsJv2SS1XNZSdD0PoH0o1TTEovX1VvHBqmO3rP_tp8f3Tx5v2M7r6enHZbq6Q5pQlxKHTxhLSUKOpYa6uue6Y7mpKqHO1bkAoJozD3DjbNUYI1kCFsWENrQw39LS4XHVNULdyin6n4oMMysvHRoi9VDF5PVjpTMep4kAdJdk-JhztnMVaU90J4E3W-rBqTfsuO6PtmKIanog-fRn9VvbhTgqeCxaBs1WgV3leditkmM5l7M7rMFrnc3-TR_Ga1lBlAlkJOoZ5jtYdhmGQS-hyDV3mKOVj6PI-k97--80D5W_KGfBuBfyyXXCz9nbU9gADgOxuUwlYFs1o8f_o1q-Jt2E_JvobwfPKLA</recordid><startdate>20211220</startdate><enddate>20211220</enddate><creator>Miranda, Jamilet</creator><creator>Bringas, Ricardo</creator><creator>Fernandez-de-Cossio, Jorge</creator><creator>Perera-Negrin, Yasser</creator><general>Springer Nature</general><general>Springer</general><general>BioMed Central</general><general>BMC</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IAO</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9601-1745</orcidid><orcidid>https://orcid.org/0000-0001-9046-8181</orcidid><orcidid>https://orcid.org/0000-0001-8696-1416</orcidid></search><sort><creationdate>20211220</creationdate><title>Targeting CK2 mediated signaling to impair/tackle SARS-CoV-2 infection: a computational biology approach</title><author>Miranda, Jamilet ; Bringas, Ricardo ; Fernandez-de-Cossio, Jorge ; Perera-Negrin, Yasser</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c635t-60bcde2293dc3d5f776cb5cb7323ff7c908a58df16dfeb9d88590411d5934d6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analysis</topic><topic>Animals</topic><topic>Antiviral agents</topic><topic>Biochemistry &amp; Molecular Biology</topic><topic>Caco-2 Cells</topic><topic>Cancer</topic><topic>Care and treatment</topic><topic>Cell Biology</topic><topic>Cells</topic><topic>Chlorocebus aethiops</topic><topic>CIGB-300</topic><topic>CK2 inhibitor</topic><topic>Computational biology</topic><topic>Computational Biology - methods</topic><topic>Coronaviruses</topic><topic>COVID-19 - metabolism</topic><topic>COVID-19 Drug Treatment</topic><topic>Drug repurposing</topic><topic>Health aspects</topic><topic>Humans</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Medical research</topic><topic>Medicine, Experimental</topic><topic>Medicine, Research &amp; Experimental</topic><topic>Nuclear Pore Complex Proteins - therapeutic use</topic><topic>Peptides, Cyclic - therapeutic use</topic><topic>Phosphoproteomics</topic><topic>Research &amp; Experimental Medicine</topic><topic>SARS-CoV-2</topic><topic>SARS-CoV-2 - drug effects</topic><topic>SARS-CoV-2 - pathogenicity</topic><topic>Science &amp; Technology</topic><topic>Vero Cells</topic><topic>Virus diseases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miranda, Jamilet</creatorcontrib><creatorcontrib>Bringas, Ricardo</creatorcontrib><creatorcontrib>Fernandez-de-Cossio, Jorge</creatorcontrib><creatorcontrib>Perera-Negrin, Yasser</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale Academic OneFile</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ开放获取期刊资源库</collection><jtitle>Molecular Medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miranda, Jamilet</au><au>Bringas, Ricardo</au><au>Fernandez-de-Cossio, Jorge</au><au>Perera-Negrin, Yasser</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Targeting CK2 mediated signaling to impair/tackle SARS-CoV-2 infection: a computational biology approach</atitle><jtitle>Molecular Medicine</jtitle><stitle>MOL MED</stitle><addtitle>Mol Med</addtitle><date>2021-12-20</date><risdate>2021</risdate><volume>27</volume><issue>1</issue><spage>161</spage><epage>18</epage><pages>161-18</pages><artnum>161</artnum><issn>1076-1551</issn><eissn>1528-3658</eissn><abstract>Background Similarities in the hijacking mechanisms used by SARS-CoV-2 and several types of cancer, suggest the repurposing of cancer drugs to treat Covid-19. CK2 kinase antagonists have been proposed for cancer treatment. A recent study in cells infected with SARS-CoV-2 found a significant CK2 kinase activity, and the use of a CK2 inhibitor showed antiviral responses. CIGB-300, originally designed as an anticancer peptide, is an antagonist of CK2 kinase activity that binds to the CK2 phospho-acceptor sites. Recent preliminary results show the antiviral activity of CIGB-300 using a surrogate model of coronavirus. Here we present a computational biology study that provides evidence, at the molecular level, of how CIGB-300 may interfere with the SARS-CoV-2 life cycle within infected human cells. Methods Sequence analyses and data from phosphorylation studies were combined to predict infection-induced molecular mechanisms that can be interfered by CIGB-300. Next, we integrated data from multi-omics studies and data focusing on the antagonistic effect on the CK2 kinase activity of CIGB-300. A combination of network and functional enrichment analyses was used. Results Firstly, from the SARS-CoV studies, we inferred the potential incidence of CIGB-300 in SARS-CoV-2 interference on the immune response. Afterwards, from the analysis of multiple omics data, we proposed the action of CIGB-300 from the early stages of viral infections perturbing the virus hijacking of RNA splicing machinery. We also predicted the interference of CIGB-300 in virus-host interactions that are responsible for the high infectivity and the particular immune response to SARS-CoV-2 infection. Furthermore, we provided evidence of how CIGB-300 may participate in the attenuation of phenotypes related to muscle, bleeding, coagulation and respiratory disorders. Conclusions Our computational analysis proposes putative molecular mechanisms that support the antiviral activity of CIGB-300.</abstract><cop>NEW YORK</cop><pub>Springer Nature</pub><pmid>34930105</pmid><doi>10.1186/s10020-021-00424-x</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-9601-1745</orcidid><orcidid>https://orcid.org/0000-0001-9046-8181</orcidid><orcidid>https://orcid.org/0000-0001-8696-1416</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1076-1551
ispartof Molecular Medicine, 2021-12, Vol.27 (1), p.161-18, Article 161
issn 1076-1551
1528-3658
language eng
recordid cdi_webofscience_primary_000732948000003CitationCount
source MEDLINE; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB-FREE-00999 freely available EZB journals; PubMed Central; Springer Nature OA/Free Journals; SpringerLink Journals - AutoHoldings; DOAJ开放获取期刊资源库
subjects Analysis
Animals
Antiviral agents
Biochemistry & Molecular Biology
Caco-2 Cells
Cancer
Care and treatment
Cell Biology
Cells
Chlorocebus aethiops
CIGB-300
CK2 inhibitor
Computational biology
Computational Biology - methods
Coronaviruses
COVID-19 - metabolism
COVID-19 Drug Treatment
Drug repurposing
Health aspects
Humans
Life Sciences & Biomedicine
Medical research
Medicine, Experimental
Medicine, Research & Experimental
Nuclear Pore Complex Proteins - therapeutic use
Peptides, Cyclic - therapeutic use
Phosphoproteomics
Research & Experimental Medicine
SARS-CoV-2
SARS-CoV-2 - drug effects
SARS-CoV-2 - pathogenicity
Science & Technology
Vero Cells
Virus diseases
title Targeting CK2 mediated signaling to impair/tackle SARS-CoV-2 infection: a computational biology approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T04%3A09%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Targeting%20CK2%20mediated%20signaling%20to%20impair/tackle%20SARS-CoV-2%20infection:%20a%20computational%20biology%20approach&rft.jtitle=Molecular%20Medicine&rft.au=Miranda,%20Jamilet&rft.date=2021-12-20&rft.volume=27&rft.issue=1&rft.spage=161&rft.epage=18&rft.pages=161-18&rft.artnum=161&rft.issn=1076-1551&rft.eissn=1528-3658&rft_id=info:doi/10.1186/s10020-021-00424-x&rft_dat=%3Cgale_webof%3EA693673704%3C/gale_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/34930105&rft_galeid=A693673704&rft_doaj_id=oai_doaj_org_article_fdb63a603f3242458f3bfe1cc3cb8069&rfr_iscdi=true