Targeting CK2 mediated signaling to impair/tackle SARS-CoV-2 infection: a computational biology approach
Background Similarities in the hijacking mechanisms used by SARS-CoV-2 and several types of cancer, suggest the repurposing of cancer drugs to treat Covid-19. CK2 kinase antagonists have been proposed for cancer treatment. A recent study in cells infected with SARS-CoV-2 found a significant CK2 kina...
Gespeichert in:
Veröffentlicht in: | Molecular Medicine 2021-12, Vol.27 (1), p.161-18, Article 161 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 18 |
---|---|
container_issue | 1 |
container_start_page | 161 |
container_title | Molecular Medicine |
container_volume | 27 |
creator | Miranda, Jamilet Bringas, Ricardo Fernandez-de-Cossio, Jorge Perera-Negrin, Yasser |
description | Background Similarities in the hijacking mechanisms used by SARS-CoV-2 and several types of cancer, suggest the repurposing of cancer drugs to treat Covid-19. CK2 kinase antagonists have been proposed for cancer treatment. A recent study in cells infected with SARS-CoV-2 found a significant CK2 kinase activity, and the use of a CK2 inhibitor showed antiviral responses. CIGB-300, originally designed as an anticancer peptide, is an antagonist of CK2 kinase activity that binds to the CK2 phospho-acceptor sites. Recent preliminary results show the antiviral activity of CIGB-300 using a surrogate model of coronavirus. Here we present a computational biology study that provides evidence, at the molecular level, of how CIGB-300 may interfere with the SARS-CoV-2 life cycle within infected human cells. Methods Sequence analyses and data from phosphorylation studies were combined to predict infection-induced molecular mechanisms that can be interfered by CIGB-300. Next, we integrated data from multi-omics studies and data focusing on the antagonistic effect on the CK2 kinase activity of CIGB-300. A combination of network and functional enrichment analyses was used. Results Firstly, from the SARS-CoV studies, we inferred the potential incidence of CIGB-300 in SARS-CoV-2 interference on the immune response. Afterwards, from the analysis of multiple omics data, we proposed the action of CIGB-300 from the early stages of viral infections perturbing the virus hijacking of RNA splicing machinery. We also predicted the interference of CIGB-300 in virus-host interactions that are responsible for the high infectivity and the particular immune response to SARS-CoV-2 infection. Furthermore, we provided evidence of how CIGB-300 may participate in the attenuation of phenotypes related to muscle, bleeding, coagulation and respiratory disorders. Conclusions Our computational analysis proposes putative molecular mechanisms that support the antiviral activity of CIGB-300. |
doi_str_mv | 10.1186/s10020-021-00424-x |
format | Article |
fullrecord | <record><control><sourceid>gale_webof</sourceid><recordid>TN_cdi_webofscience_primary_000732948000003CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A693673704</galeid><doaj_id>oai_doaj_org_article_fdb63a603f3242458f3bfe1cc3cb8069</doaj_id><sourcerecordid>A693673704</sourcerecordid><originalsourceid>FETCH-LOGICAL-c635t-60bcde2293dc3d5f776cb5cb7323ff7c908a58df16dfeb9d88590411d5934d6d3</originalsourceid><addsrcrecordid>eNqNUU1v1DAUjBCIfsAf4IByR26f7dhxOCCtIigVlZBo4Wo5_si6ZOPI8Zb23-M0sKI3_A62n2fmWTNF8QbDGcaCn88YgAACghFARSp0_6w4xowIRDkTz_MZao4wY_ioOJnn24zGrGIviyNaNRQwsONie6Nib5Mf-7L9QsqdNV4la8rZ96MalnYKpd9NysfzpPTPwZbXm2_XqA0_ECn96KxOPozvS1XqsJv2SS1XNZSdD0PoH0o1TTEovX1VvHBqmO3rP_tp8f3Tx5v2M7r6enHZbq6Q5pQlxKHTxhLSUKOpYa6uue6Y7mpKqHO1bkAoJozD3DjbNUYI1kCFsWENrQw39LS4XHVNULdyin6n4oMMysvHRoi9VDF5PVjpTMep4kAdJdk-JhztnMVaU90J4E3W-rBqTfsuO6PtmKIanog-fRn9VvbhTgqeCxaBs1WgV3leditkmM5l7M7rMFrnc3-TR_Ga1lBlAlkJOoZ5jtYdhmGQS-hyDV3mKOVj6PI-k97--80D5W_KGfBuBfyyXXCz9nbU9gADgOxuUwlYFs1o8f_o1q-Jt2E_JvobwfPKLA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Targeting CK2 mediated signaling to impair/tackle SARS-CoV-2 infection: a computational biology approach</title><source>MEDLINE</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Springer Nature OA/Free Journals</source><source>SpringerLink Journals - AutoHoldings</source><source>DOAJ开放获取期刊资源库</source><creator>Miranda, Jamilet ; Bringas, Ricardo ; Fernandez-de-Cossio, Jorge ; Perera-Negrin, Yasser</creator><creatorcontrib>Miranda, Jamilet ; Bringas, Ricardo ; Fernandez-de-Cossio, Jorge ; Perera-Negrin, Yasser</creatorcontrib><description>Background Similarities in the hijacking mechanisms used by SARS-CoV-2 and several types of cancer, suggest the repurposing of cancer drugs to treat Covid-19. CK2 kinase antagonists have been proposed for cancer treatment. A recent study in cells infected with SARS-CoV-2 found a significant CK2 kinase activity, and the use of a CK2 inhibitor showed antiviral responses. CIGB-300, originally designed as an anticancer peptide, is an antagonist of CK2 kinase activity that binds to the CK2 phospho-acceptor sites. Recent preliminary results show the antiviral activity of CIGB-300 using a surrogate model of coronavirus. Here we present a computational biology study that provides evidence, at the molecular level, of how CIGB-300 may interfere with the SARS-CoV-2 life cycle within infected human cells. Methods Sequence analyses and data from phosphorylation studies were combined to predict infection-induced molecular mechanisms that can be interfered by CIGB-300. Next, we integrated data from multi-omics studies and data focusing on the antagonistic effect on the CK2 kinase activity of CIGB-300. A combination of network and functional enrichment analyses was used. Results Firstly, from the SARS-CoV studies, we inferred the potential incidence of CIGB-300 in SARS-CoV-2 interference on the immune response. Afterwards, from the analysis of multiple omics data, we proposed the action of CIGB-300 from the early stages of viral infections perturbing the virus hijacking of RNA splicing machinery. We also predicted the interference of CIGB-300 in virus-host interactions that are responsible for the high infectivity and the particular immune response to SARS-CoV-2 infection. Furthermore, we provided evidence of how CIGB-300 may participate in the attenuation of phenotypes related to muscle, bleeding, coagulation and respiratory disorders. Conclusions Our computational analysis proposes putative molecular mechanisms that support the antiviral activity of CIGB-300.</description><identifier>ISSN: 1076-1551</identifier><identifier>EISSN: 1528-3658</identifier><identifier>DOI: 10.1186/s10020-021-00424-x</identifier><identifier>PMID: 34930105</identifier><language>eng</language><publisher>NEW YORK: Springer Nature</publisher><subject>Analysis ; Animals ; Antiviral agents ; Biochemistry & Molecular Biology ; Caco-2 Cells ; Cancer ; Care and treatment ; Cell Biology ; Cells ; Chlorocebus aethiops ; CIGB-300 ; CK2 inhibitor ; Computational biology ; Computational Biology - methods ; Coronaviruses ; COVID-19 - metabolism ; COVID-19 Drug Treatment ; Drug repurposing ; Health aspects ; Humans ; Life Sciences & Biomedicine ; Medical research ; Medicine, Experimental ; Medicine, Research & Experimental ; Nuclear Pore Complex Proteins - therapeutic use ; Peptides, Cyclic - therapeutic use ; Phosphoproteomics ; Research & Experimental Medicine ; SARS-CoV-2 ; SARS-CoV-2 - drug effects ; SARS-CoV-2 - pathogenicity ; Science & Technology ; Vero Cells ; Virus diseases</subject><ispartof>Molecular Medicine, 2021-12, Vol.27 (1), p.161-18, Article 161</ispartof><rights>2021. The Author(s).</rights><rights>COPYRIGHT 2021 Springer</rights><rights>The Author(s) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>9</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000732948000003</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c635t-60bcde2293dc3d5f776cb5cb7323ff7c908a58df16dfeb9d88590411d5934d6d3</citedby><cites>FETCH-LOGICAL-c635t-60bcde2293dc3d5f776cb5cb7323ff7c908a58df16dfeb9d88590411d5934d6d3</cites><orcidid>0000-0002-9601-1745 ; 0000-0001-9046-8181 ; 0000-0001-8696-1416</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8686809/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8686809/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,2115,27929,27930,39263,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34930105$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Miranda, Jamilet</creatorcontrib><creatorcontrib>Bringas, Ricardo</creatorcontrib><creatorcontrib>Fernandez-de-Cossio, Jorge</creatorcontrib><creatorcontrib>Perera-Negrin, Yasser</creatorcontrib><title>Targeting CK2 mediated signaling to impair/tackle SARS-CoV-2 infection: a computational biology approach</title><title>Molecular Medicine</title><addtitle>MOL MED</addtitle><addtitle>Mol Med</addtitle><description>Background Similarities in the hijacking mechanisms used by SARS-CoV-2 and several types of cancer, suggest the repurposing of cancer drugs to treat Covid-19. CK2 kinase antagonists have been proposed for cancer treatment. A recent study in cells infected with SARS-CoV-2 found a significant CK2 kinase activity, and the use of a CK2 inhibitor showed antiviral responses. CIGB-300, originally designed as an anticancer peptide, is an antagonist of CK2 kinase activity that binds to the CK2 phospho-acceptor sites. Recent preliminary results show the antiviral activity of CIGB-300 using a surrogate model of coronavirus. Here we present a computational biology study that provides evidence, at the molecular level, of how CIGB-300 may interfere with the SARS-CoV-2 life cycle within infected human cells. Methods Sequence analyses and data from phosphorylation studies were combined to predict infection-induced molecular mechanisms that can be interfered by CIGB-300. Next, we integrated data from multi-omics studies and data focusing on the antagonistic effect on the CK2 kinase activity of CIGB-300. A combination of network and functional enrichment analyses was used. Results Firstly, from the SARS-CoV studies, we inferred the potential incidence of CIGB-300 in SARS-CoV-2 interference on the immune response. Afterwards, from the analysis of multiple omics data, we proposed the action of CIGB-300 from the early stages of viral infections perturbing the virus hijacking of RNA splicing machinery. We also predicted the interference of CIGB-300 in virus-host interactions that are responsible for the high infectivity and the particular immune response to SARS-CoV-2 infection. Furthermore, we provided evidence of how CIGB-300 may participate in the attenuation of phenotypes related to muscle, bleeding, coagulation and respiratory disorders. Conclusions Our computational analysis proposes putative molecular mechanisms that support the antiviral activity of CIGB-300.</description><subject>Analysis</subject><subject>Animals</subject><subject>Antiviral agents</subject><subject>Biochemistry & Molecular Biology</subject><subject>Caco-2 Cells</subject><subject>Cancer</subject><subject>Care and treatment</subject><subject>Cell Biology</subject><subject>Cells</subject><subject>Chlorocebus aethiops</subject><subject>CIGB-300</subject><subject>CK2 inhibitor</subject><subject>Computational biology</subject><subject>Computational Biology - methods</subject><subject>Coronaviruses</subject><subject>COVID-19 - metabolism</subject><subject>COVID-19 Drug Treatment</subject><subject>Drug repurposing</subject><subject>Health aspects</subject><subject>Humans</subject><subject>Life Sciences & Biomedicine</subject><subject>Medical research</subject><subject>Medicine, Experimental</subject><subject>Medicine, Research & Experimental</subject><subject>Nuclear Pore Complex Proteins - therapeutic use</subject><subject>Peptides, Cyclic - therapeutic use</subject><subject>Phosphoproteomics</subject><subject>Research & Experimental Medicine</subject><subject>SARS-CoV-2</subject><subject>SARS-CoV-2 - drug effects</subject><subject>SARS-CoV-2 - pathogenicity</subject><subject>Science & Technology</subject><subject>Vero Cells</subject><subject>Virus diseases</subject><issn>1076-1551</issn><issn>1528-3658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNqNUU1v1DAUjBCIfsAf4IByR26f7dhxOCCtIigVlZBo4Wo5_si6ZOPI8Zb23-M0sKI3_A62n2fmWTNF8QbDGcaCn88YgAACghFARSp0_6w4xowIRDkTz_MZao4wY_ioOJnn24zGrGIviyNaNRQwsONie6Nib5Mf-7L9QsqdNV4la8rZ96MalnYKpd9NysfzpPTPwZbXm2_XqA0_ECn96KxOPozvS1XqsJv2SS1XNZSdD0PoH0o1TTEovX1VvHBqmO3rP_tp8f3Tx5v2M7r6enHZbq6Q5pQlxKHTxhLSUKOpYa6uue6Y7mpKqHO1bkAoJozD3DjbNUYI1kCFsWENrQw39LS4XHVNULdyin6n4oMMysvHRoi9VDF5PVjpTMep4kAdJdk-JhztnMVaU90J4E3W-rBqTfsuO6PtmKIanog-fRn9VvbhTgqeCxaBs1WgV3leditkmM5l7M7rMFrnc3-TR_Ga1lBlAlkJOoZ5jtYdhmGQS-hyDV3mKOVj6PI-k97--80D5W_KGfBuBfyyXXCz9nbU9gADgOxuUwlYFs1o8f_o1q-Jt2E_JvobwfPKLA</recordid><startdate>20211220</startdate><enddate>20211220</enddate><creator>Miranda, Jamilet</creator><creator>Bringas, Ricardo</creator><creator>Fernandez-de-Cossio, Jorge</creator><creator>Perera-Negrin, Yasser</creator><general>Springer Nature</general><general>Springer</general><general>BioMed Central</general><general>BMC</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IAO</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9601-1745</orcidid><orcidid>https://orcid.org/0000-0001-9046-8181</orcidid><orcidid>https://orcid.org/0000-0001-8696-1416</orcidid></search><sort><creationdate>20211220</creationdate><title>Targeting CK2 mediated signaling to impair/tackle SARS-CoV-2 infection: a computational biology approach</title><author>Miranda, Jamilet ; Bringas, Ricardo ; Fernandez-de-Cossio, Jorge ; Perera-Negrin, Yasser</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c635t-60bcde2293dc3d5f776cb5cb7323ff7c908a58df16dfeb9d88590411d5934d6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analysis</topic><topic>Animals</topic><topic>Antiviral agents</topic><topic>Biochemistry & Molecular Biology</topic><topic>Caco-2 Cells</topic><topic>Cancer</topic><topic>Care and treatment</topic><topic>Cell Biology</topic><topic>Cells</topic><topic>Chlorocebus aethiops</topic><topic>CIGB-300</topic><topic>CK2 inhibitor</topic><topic>Computational biology</topic><topic>Computational Biology - methods</topic><topic>Coronaviruses</topic><topic>COVID-19 - metabolism</topic><topic>COVID-19 Drug Treatment</topic><topic>Drug repurposing</topic><topic>Health aspects</topic><topic>Humans</topic><topic>Life Sciences & Biomedicine</topic><topic>Medical research</topic><topic>Medicine, Experimental</topic><topic>Medicine, Research & Experimental</topic><topic>Nuclear Pore Complex Proteins - therapeutic use</topic><topic>Peptides, Cyclic - therapeutic use</topic><topic>Phosphoproteomics</topic><topic>Research & Experimental Medicine</topic><topic>SARS-CoV-2</topic><topic>SARS-CoV-2 - drug effects</topic><topic>SARS-CoV-2 - pathogenicity</topic><topic>Science & Technology</topic><topic>Vero Cells</topic><topic>Virus diseases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miranda, Jamilet</creatorcontrib><creatorcontrib>Bringas, Ricardo</creatorcontrib><creatorcontrib>Fernandez-de-Cossio, Jorge</creatorcontrib><creatorcontrib>Perera-Negrin, Yasser</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale Academic OneFile</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ开放获取期刊资源库</collection><jtitle>Molecular Medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miranda, Jamilet</au><au>Bringas, Ricardo</au><au>Fernandez-de-Cossio, Jorge</au><au>Perera-Negrin, Yasser</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Targeting CK2 mediated signaling to impair/tackle SARS-CoV-2 infection: a computational biology approach</atitle><jtitle>Molecular Medicine</jtitle><stitle>MOL MED</stitle><addtitle>Mol Med</addtitle><date>2021-12-20</date><risdate>2021</risdate><volume>27</volume><issue>1</issue><spage>161</spage><epage>18</epage><pages>161-18</pages><artnum>161</artnum><issn>1076-1551</issn><eissn>1528-3658</eissn><abstract>Background Similarities in the hijacking mechanisms used by SARS-CoV-2 and several types of cancer, suggest the repurposing of cancer drugs to treat Covid-19. CK2 kinase antagonists have been proposed for cancer treatment. A recent study in cells infected with SARS-CoV-2 found a significant CK2 kinase activity, and the use of a CK2 inhibitor showed antiviral responses. CIGB-300, originally designed as an anticancer peptide, is an antagonist of CK2 kinase activity that binds to the CK2 phospho-acceptor sites. Recent preliminary results show the antiviral activity of CIGB-300 using a surrogate model of coronavirus. Here we present a computational biology study that provides evidence, at the molecular level, of how CIGB-300 may interfere with the SARS-CoV-2 life cycle within infected human cells. Methods Sequence analyses and data from phosphorylation studies were combined to predict infection-induced molecular mechanisms that can be interfered by CIGB-300. Next, we integrated data from multi-omics studies and data focusing on the antagonistic effect on the CK2 kinase activity of CIGB-300. A combination of network and functional enrichment analyses was used. Results Firstly, from the SARS-CoV studies, we inferred the potential incidence of CIGB-300 in SARS-CoV-2 interference on the immune response. Afterwards, from the analysis of multiple omics data, we proposed the action of CIGB-300 from the early stages of viral infections perturbing the virus hijacking of RNA splicing machinery. We also predicted the interference of CIGB-300 in virus-host interactions that are responsible for the high infectivity and the particular immune response to SARS-CoV-2 infection. Furthermore, we provided evidence of how CIGB-300 may participate in the attenuation of phenotypes related to muscle, bleeding, coagulation and respiratory disorders. Conclusions Our computational analysis proposes putative molecular mechanisms that support the antiviral activity of CIGB-300.</abstract><cop>NEW YORK</cop><pub>Springer Nature</pub><pmid>34930105</pmid><doi>10.1186/s10020-021-00424-x</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-9601-1745</orcidid><orcidid>https://orcid.org/0000-0001-9046-8181</orcidid><orcidid>https://orcid.org/0000-0001-8696-1416</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1076-1551 |
ispartof | Molecular Medicine, 2021-12, Vol.27 (1), p.161-18, Article 161 |
issn | 1076-1551 1528-3658 |
language | eng |
recordid | cdi_webofscience_primary_000732948000003CitationCount |
source | MEDLINE; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB-FREE-00999 freely available EZB journals; PubMed Central; Springer Nature OA/Free Journals; SpringerLink Journals - AutoHoldings; DOAJ开放获取期刊资源库 |
subjects | Analysis Animals Antiviral agents Biochemistry & Molecular Biology Caco-2 Cells Cancer Care and treatment Cell Biology Cells Chlorocebus aethiops CIGB-300 CK2 inhibitor Computational biology Computational Biology - methods Coronaviruses COVID-19 - metabolism COVID-19 Drug Treatment Drug repurposing Health aspects Humans Life Sciences & Biomedicine Medical research Medicine, Experimental Medicine, Research & Experimental Nuclear Pore Complex Proteins - therapeutic use Peptides, Cyclic - therapeutic use Phosphoproteomics Research & Experimental Medicine SARS-CoV-2 SARS-CoV-2 - drug effects SARS-CoV-2 - pathogenicity Science & Technology Vero Cells Virus diseases |
title | Targeting CK2 mediated signaling to impair/tackle SARS-CoV-2 infection: a computational biology approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T04%3A09%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Targeting%20CK2%20mediated%20signaling%20to%20impair/tackle%20SARS-CoV-2%20infection:%20a%20computational%20biology%20approach&rft.jtitle=Molecular%20Medicine&rft.au=Miranda,%20Jamilet&rft.date=2021-12-20&rft.volume=27&rft.issue=1&rft.spage=161&rft.epage=18&rft.pages=161-18&rft.artnum=161&rft.issn=1076-1551&rft.eissn=1528-3658&rft_id=info:doi/10.1186/s10020-021-00424-x&rft_dat=%3Cgale_webof%3EA693673704%3C/gale_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/34930105&rft_galeid=A693673704&rft_doaj_id=oai_doaj_org_article_fdb63a603f3242458f3bfe1cc3cb8069&rfr_iscdi=true |