A particle‐filtering framework for integrity risk of GNSS‐camera sensor fusion

Adopting a joint approach toward state estimation and integrity monitoring results in unbiased integrity monitoring unlike traditional approaches. So far, a joint approach was used in particle RAIM (Gupta & Gao, 2019) for GNSS measurements only. In our work, we extend Particle RAIM to a GNSS‐cam...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Navigation (Washington) 2021-12, Vol.68 (4), p.709-726
Hauptverfasser: Mohanty, Adyasha, Gupta, Shubh, Gao, Grace Xingxin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Adopting a joint approach toward state estimation and integrity monitoring results in unbiased integrity monitoring unlike traditional approaches. So far, a joint approach was used in particle RAIM (Gupta & Gao, 2019) for GNSS measurements only. In our work, we extend Particle RAIM to a GNSS‐camera fused system for joint state estimation and integrity monitoring. To account for vision faults, we derived a probability distribution over position from camera images using map‐matching. We formulated a Kullback‐Leibler divergence (Kullback & Leibler, 1951) metric to assess the consistency of GNSS and camera measurements and mitigate faults during sensor fusion. Experimental validation on a real‐world data set shows that our algorithm produces less than 11 m position error and the integrity risk over bounds the probability of HMI with 0.11 failure rate for an 8 m alert limit in an urban scenario.
ISSN:0028-1522
2161-4296
DOI:10.1002/navi.455