ON STRONG SOLUTIONS OF ITO'S EQUATIONS WITH sigma is an element of W-d(1) AND b is an element of L-d
We consider Ito uniformly nondegenerate equations with time independent coefficients, the diffusion coefficient in W-d,loc(1) and the drift in L-d. We prove the unique strong solvability for any starting point and prove that, as a function of the starting point, the solutions are Holder continuous w...
Gespeichert in:
Veröffentlicht in: | The Annals of probability 2021-11, Vol.49 (6), p.3142-3167 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3167 |
---|---|
container_issue | 6 |
container_start_page | 3142 |
container_title | The Annals of probability |
container_volume | 49 |
creator | Krylov, N. |
description | We consider Ito uniformly nondegenerate equations with time independent coefficients, the diffusion coefficient in W-d,loc(1) and the drift in L-d. We prove the unique strong solvability for any starting point and prove that, as a function of the starting point, the solutions are Holder continuous with any exponent < 1. We also prove that if we are given a sequence of coefficients converging in an appropriate sense to the original ones, then the solutions of approximating equations converge to the solution of the original one. |
doi_str_mv | 10.1214/21-AOP1525 |
format | Article |
fullrecord | <record><control><sourceid>webofscience</sourceid><recordid>TN_cdi_webofscience_primary_000728171900010</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>000728171900010</sourcerecordid><originalsourceid>FETCH-webofscience_primary_0007281719000103</originalsourceid><addsrcrecordid>eNqVjr1uwjAYRT0UiZ-y9Am-DRBy6y9AnYxR-IuE4rYxYkSGOMiIOAgHId4eJLqxtNO9uucMl5A3ZO_o4fDDQxqKLxx5oxfSYCxAijzw66Tp3J4x9sn5sEEykUAqf0Qyg1QsljIWSQpiCrEUnRQm38vwMa1iOQdndoUC40BZ0AddaFtBmcOKZl3sQZiMYfNMFzR7JbVcHZxu_2aL9KcTGc3pRW_K3G2Ntlu9Pp5MoU7X9f0b93zkGNwbssF_bf_vdmQqVZnSRuXZVoMbk_pZWA</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>ON STRONG SOLUTIONS OF ITO'S EQUATIONS WITH sigma is an element of W-d(1) AND b is an element of L-d</title><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>EZB-FREE-00999 freely available EZB journals</source><source>Project Euclid Complete</source><creator>Krylov, N.</creator><creatorcontrib>Krylov, N.</creatorcontrib><description>We consider Ito uniformly nondegenerate equations with time independent coefficients, the diffusion coefficient in W-d,loc(1) and the drift in L-d. We prove the unique strong solvability for any starting point and prove that, as a function of the starting point, the solutions are Holder continuous with any exponent < 1. We also prove that if we are given a sequence of coefficients converging in an appropriate sense to the original ones, then the solutions of approximating equations converge to the solution of the original one.</description><identifier>ISSN: 0091-1798</identifier><identifier>DOI: 10.1214/21-AOP1525</identifier><language>eng</language><publisher>CLEVELAND: INST MATHEMATICAL STATISTICS-IMS</publisher><subject>Mathematics ; Physical Sciences ; Science & Technology ; Statistics & Probability</subject><ispartof>The Annals of probability, 2021-11, Vol.49 (6), p.3142-3167</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>10</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000728171900010</woscitedreferencesoriginalsourcerecordid><cites>FETCH-webofscience_primary_0007281719000103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930,39263</link.rule.ids></links><search><creatorcontrib>Krylov, N.</creatorcontrib><title>ON STRONG SOLUTIONS OF ITO'S EQUATIONS WITH sigma is an element of W-d(1) AND b is an element of L-d</title><title>The Annals of probability</title><addtitle>ANN PROBAB</addtitle><description>We consider Ito uniformly nondegenerate equations with time independent coefficients, the diffusion coefficient in W-d,loc(1) and the drift in L-d. We prove the unique strong solvability for any starting point and prove that, as a function of the starting point, the solutions are Holder continuous with any exponent < 1. We also prove that if we are given a sequence of coefficients converging in an appropriate sense to the original ones, then the solutions of approximating equations converge to the solution of the original one.</description><subject>Mathematics</subject><subject>Physical Sciences</subject><subject>Science & Technology</subject><subject>Statistics & Probability</subject><issn>0091-1798</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqVjr1uwjAYRT0UiZ-y9Am-DRBy6y9AnYxR-IuE4rYxYkSGOMiIOAgHId4eJLqxtNO9uucMl5A3ZO_o4fDDQxqKLxx5oxfSYCxAijzw66Tp3J4x9sn5sEEykUAqf0Qyg1QsljIWSQpiCrEUnRQm38vwMa1iOQdndoUC40BZ0AddaFtBmcOKZl3sQZiMYfNMFzR7JbVcHZxu_2aL9KcTGc3pRW_K3G2Ntlu9Pp5MoU7X9f0b93zkGNwbssF_bf_vdmQqVZnSRuXZVoMbk_pZWA</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Krylov, N.</creator><general>INST MATHEMATICAL STATISTICS-IMS</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope></search><sort><creationdate>20211101</creationdate><title>ON STRONG SOLUTIONS OF ITO'S EQUATIONS WITH sigma is an element of W-d(1) AND b is an element of L-d</title><author>Krylov, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-webofscience_primary_0007281719000103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Mathematics</topic><topic>Physical Sciences</topic><topic>Science & Technology</topic><topic>Statistics & Probability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krylov, N.</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><jtitle>The Annals of probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krylov, N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ON STRONG SOLUTIONS OF ITO'S EQUATIONS WITH sigma is an element of W-d(1) AND b is an element of L-d</atitle><jtitle>The Annals of probability</jtitle><stitle>ANN PROBAB</stitle><date>2021-11-01</date><risdate>2021</risdate><volume>49</volume><issue>6</issue><spage>3142</spage><epage>3167</epage><pages>3142-3167</pages><issn>0091-1798</issn><abstract>We consider Ito uniformly nondegenerate equations with time independent coefficients, the diffusion coefficient in W-d,loc(1) and the drift in L-d. We prove the unique strong solvability for any starting point and prove that, as a function of the starting point, the solutions are Holder continuous with any exponent < 1. We also prove that if we are given a sequence of coefficients converging in an appropriate sense to the original ones, then the solutions of approximating equations converge to the solution of the original one.</abstract><cop>CLEVELAND</cop><pub>INST MATHEMATICAL STATISTICS-IMS</pub><doi>10.1214/21-AOP1525</doi><tpages>26</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0091-1798 |
ispartof | The Annals of probability, 2021-11, Vol.49 (6), p.3142-3167 |
issn | 0091-1798 |
language | eng |
recordid | cdi_webofscience_primary_000728171900010 |
source | Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB-FREE-00999 freely available EZB journals; Project Euclid Complete |
subjects | Mathematics Physical Sciences Science & Technology Statistics & Probability |
title | ON STRONG SOLUTIONS OF ITO'S EQUATIONS WITH sigma is an element of W-d(1) AND b is an element of L-d |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T10%3A29%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-webofscience&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ON%20STRONG%20SOLUTIONS%20OF%20ITO'S%20EQUATIONS%20WITH%20sigma%20is%20an%20element%20of%20W-d(1)%20AND%20b%20is%20an%20element%20of%20L-d&rft.jtitle=The%20Annals%20of%20probability&rft.au=Krylov,%20N.&rft.date=2021-11-01&rft.volume=49&rft.issue=6&rft.spage=3142&rft.epage=3167&rft.pages=3142-3167&rft.issn=0091-1798&rft_id=info:doi/10.1214/21-AOP1525&rft_dat=%3Cwebofscience%3E000728171900010%3C/webofscience%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |