ON STRONG SOLUTIONS OF ITO'S EQUATIONS WITH sigma is an element of W-d(1) AND b is an element of L-d

We consider Ito uniformly nondegenerate equations with time independent coefficients, the diffusion coefficient in W-d,loc(1) and the drift in L-d. We prove the unique strong solvability for any starting point and prove that, as a function of the starting point, the solutions are Holder continuous w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of probability 2021-11, Vol.49 (6), p.3142-3167
1. Verfasser: Krylov, N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider Ito uniformly nondegenerate equations with time independent coefficients, the diffusion coefficient in W-d,loc(1) and the drift in L-d. We prove the unique strong solvability for any starting point and prove that, as a function of the starting point, the solutions are Holder continuous with any exponent < 1. We also prove that if we are given a sequence of coefficients converging in an appropriate sense to the original ones, then the solutions of approximating equations converge to the solution of the original one.
ISSN:0091-1798
DOI:10.1214/21-AOP1525