Improving Texture and Microstructure Homogeneity in High-Purity Ta Sheets by Warm Cross Rolling and Annealing
The evolution of texture and microstructure uniformity in high-purity tantalum (Ta) sheets during 135° warm cross rolling (WCR) was analyzed in detail. X-ray diffraction suggested that relatively uniform ‘ideal’ deformation texture distribution across the thickness could be obtained from WCR, since...
Gespeichert in:
Veröffentlicht in: | Metals (Basel ) 2021-11, Vol.11 (11), p.1665 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 11 |
container_start_page | 1665 |
container_title | Metals (Basel ) |
container_volume | 11 |
creator | Long, Doudou Liu, Shifeng Zhu, Jialin Liu, Yahui Zhou, Shiyuan Yuan, Xiaoli Orlov, Dmytro |
description | The evolution of texture and microstructure uniformity in high-purity tantalum (Ta) sheets during 135° warm cross rolling (WCR) was analyzed in detail. X-ray diffraction suggested that relatively uniform ‘ideal’ deformation texture distribution across the thickness could be obtained from WCR, since more potential slip systems could be activated. Electron backscatter diffraction (EBSD) results indicated that the change in strain path in warm rolling could enhance dislocations mobility and increase the probability of dislocations rearrangement and annihilation. Thus, the proportion of low-angle grain boundaries was significantly reduced, and more sub-grain boundaries or sub-grains were formed via WCR. The calculation of geometrically necessary dislocation density based on the strain gradient model supports this result. The analysis of relative Schmid factor combined with the strain contouring map indicated that inhomogeneous orientation-dependent grain subdivision could be effectively weakened, and relatively uniform strain distribution could be formed in the WCR sample. Upon annealing, uniform fine grain size and more randomly oriented grains were obtained in the WCR sample after the completion of recrystallization because of relatively uniform grain subdivision and stored energy distribution. |
doi_str_mv | 10.3390/met11111665 |
format | Article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_4dc505bd259d491aa351c294234de486</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_4dc505bd259d491aa351c294234de486</doaj_id><sourcerecordid>2602137700</sourcerecordid><originalsourceid>FETCH-LOGICAL-c433t-8fec92ddfc8a9a799e5998f5c7b645e8fdd8133faf77516c197159059ac2d36f3</originalsourceid><addsrcrecordid>eNpVkd9rFDEQxxdRsLR98h8I-Ciryeb3YznUOzip1Ct9DNlkct1jd3Mmu-r992Z7Iu3AMJlh5pNhvlX1juCPlGr8aYCJLCYEf1VdNFjymklMXj97v62ucz7gYqoRWOuLatgMxxR_deMe7eDPNCdAdvToW-dSzFOa3VNpHYe4hxG66YS6Ea27_WP9fU5LurPoxyPAlFF7Qg82DWhVJjO6i32_UBfazTiCXbKr6k2wfYbrf_Gyuv_yebda19vbr5vVzbZ2jNKpVgGcbrwPTlltpdbAtVaBO9kKxkEF7xWhNNggJSfCES0J15hr6xpPRaCX1ebM9dEezDF1g00nE21nngox7Y1NU-d6MMw7jnnrG64908RayolrNGso88CUKKztmZV_w3FuX9D6-Vi8LW4yGGGpZ0EJEwgvYO680UCcUWVjyyA4ymnBvT_jytl_zpAnc4hzGss1TJGkIVRKjEvXh3PXIkNOEP5_S7BZ1DbP1KZ_AUQVnRw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2602137700</pqid></control><display><type>article</type><title>Improving Texture and Microstructure Homogeneity in High-Purity Ta Sheets by Warm Cross Rolling and Annealing</title><source>DOAJ Directory of Open Access Journals</source><source>SWEPUB Freely available online</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Long, Doudou ; Liu, Shifeng ; Zhu, Jialin ; Liu, Yahui ; Zhou, Shiyuan ; Yuan, Xiaoli ; Orlov, Dmytro</creator><creatorcontrib>Long, Doudou ; Liu, Shifeng ; Zhu, Jialin ; Liu, Yahui ; Zhou, Shiyuan ; Yuan, Xiaoli ; Orlov, Dmytro</creatorcontrib><description>The evolution of texture and microstructure uniformity in high-purity tantalum (Ta) sheets during 135° warm cross rolling (WCR) was analyzed in detail. X-ray diffraction suggested that relatively uniform ‘ideal’ deformation texture distribution across the thickness could be obtained from WCR, since more potential slip systems could be activated. Electron backscatter diffraction (EBSD) results indicated that the change in strain path in warm rolling could enhance dislocations mobility and increase the probability of dislocations rearrangement and annihilation. Thus, the proportion of low-angle grain boundaries was significantly reduced, and more sub-grain boundaries or sub-grains were formed via WCR. The calculation of geometrically necessary dislocation density based on the strain gradient model supports this result. The analysis of relative Schmid factor combined with the strain contouring map indicated that inhomogeneous orientation-dependent grain subdivision could be effectively weakened, and relatively uniform strain distribution could be formed in the WCR sample. Upon annealing, uniform fine grain size and more randomly oriented grains were obtained in the WCR sample after the completion of recrystallization because of relatively uniform grain subdivision and stored energy distribution.</description><identifier>ISSN: 2075-4701</identifier><identifier>EISSN: 2075-4701</identifier><identifier>DOI: 10.3390/met11111665</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>135 warm cross rolling ; 135° warm cross rolling ; Annealing ; Contouring ; Cross rolling ; Deformation ; Dislocation density ; Dislocation mobility ; Dislocation movement ; Electron backscatter diffraction ; Energy distribution ; Engineering and Technology ; Geometrically necessary dislocation ; Grain boundaries ; Grain size ; Homogeneity ; Internal energy ; Materials Engineering ; Materialteknik ; Metallurgi och metalliska material ; Metallurgy and Metallic Materials ; Microstructure ; Powder metallurgy ; Purity ; Recrystallization ; Rolling texture ; Schmid factor ; Semiconductors ; Shear strain ; Sheets ; Software ; Strain distribution ; Tantalum ; Teknik ; Texture ; Titanium alloys ; Warm rolling ; Warm working</subject><ispartof>Metals (Basel ), 2021-11, Vol.11 (11), p.1665</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c433t-8fec92ddfc8a9a799e5998f5c7b645e8fdd8133faf77516c197159059ac2d36f3</citedby><cites>FETCH-LOGICAL-c433t-8fec92ddfc8a9a799e5998f5c7b645e8fdd8133faf77516c197159059ac2d36f3</cites><orcidid>0000-0002-7860-749X ; 0000-0002-1115-4609</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,552,780,784,864,885,2102,27924,27925</link.rule.ids><backlink>$$Uhttps://lup.lub.lu.se/record/6a3d4f86-f15e-45cd-9e1c-8e8fa4efc353$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Long, Doudou</creatorcontrib><creatorcontrib>Liu, Shifeng</creatorcontrib><creatorcontrib>Zhu, Jialin</creatorcontrib><creatorcontrib>Liu, Yahui</creatorcontrib><creatorcontrib>Zhou, Shiyuan</creatorcontrib><creatorcontrib>Yuan, Xiaoli</creatorcontrib><creatorcontrib>Orlov, Dmytro</creatorcontrib><title>Improving Texture and Microstructure Homogeneity in High-Purity Ta Sheets by Warm Cross Rolling and Annealing</title><title>Metals (Basel )</title><description>The evolution of texture and microstructure uniformity in high-purity tantalum (Ta) sheets during 135° warm cross rolling (WCR) was analyzed in detail. X-ray diffraction suggested that relatively uniform ‘ideal’ deformation texture distribution across the thickness could be obtained from WCR, since more potential slip systems could be activated. Electron backscatter diffraction (EBSD) results indicated that the change in strain path in warm rolling could enhance dislocations mobility and increase the probability of dislocations rearrangement and annihilation. Thus, the proportion of low-angle grain boundaries was significantly reduced, and more sub-grain boundaries or sub-grains were formed via WCR. The calculation of geometrically necessary dislocation density based on the strain gradient model supports this result. The analysis of relative Schmid factor combined with the strain contouring map indicated that inhomogeneous orientation-dependent grain subdivision could be effectively weakened, and relatively uniform strain distribution could be formed in the WCR sample. Upon annealing, uniform fine grain size and more randomly oriented grains were obtained in the WCR sample after the completion of recrystallization because of relatively uniform grain subdivision and stored energy distribution.</description><subject>135 warm cross rolling</subject><subject>135° warm cross rolling</subject><subject>Annealing</subject><subject>Contouring</subject><subject>Cross rolling</subject><subject>Deformation</subject><subject>Dislocation density</subject><subject>Dislocation mobility</subject><subject>Dislocation movement</subject><subject>Electron backscatter diffraction</subject><subject>Energy distribution</subject><subject>Engineering and Technology</subject><subject>Geometrically necessary dislocation</subject><subject>Grain boundaries</subject><subject>Grain size</subject><subject>Homogeneity</subject><subject>Internal energy</subject><subject>Materials Engineering</subject><subject>Materialteknik</subject><subject>Metallurgi och metalliska material</subject><subject>Metallurgy and Metallic Materials</subject><subject>Microstructure</subject><subject>Powder metallurgy</subject><subject>Purity</subject><subject>Recrystallization</subject><subject>Rolling texture</subject><subject>Schmid factor</subject><subject>Semiconductors</subject><subject>Shear strain</subject><subject>Sheets</subject><subject>Software</subject><subject>Strain distribution</subject><subject>Tantalum</subject><subject>Teknik</subject><subject>Texture</subject><subject>Titanium alloys</subject><subject>Warm rolling</subject><subject>Warm working</subject><issn>2075-4701</issn><issn>2075-4701</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>D8T</sourceid><sourceid>DOA</sourceid><recordid>eNpVkd9rFDEQxxdRsLR98h8I-Ciryeb3YznUOzip1Ct9DNlkct1jd3Mmu-r992Z7Iu3AMJlh5pNhvlX1juCPlGr8aYCJLCYEf1VdNFjymklMXj97v62ucz7gYqoRWOuLatgMxxR_deMe7eDPNCdAdvToW-dSzFOa3VNpHYe4hxG66YS6Ea27_WP9fU5LurPoxyPAlFF7Qg82DWhVJjO6i32_UBfazTiCXbKr6k2wfYbrf_Gyuv_yebda19vbr5vVzbZ2jNKpVgGcbrwPTlltpdbAtVaBO9kKxkEF7xWhNNggJSfCES0J15hr6xpPRaCX1ebM9dEezDF1g00nE21nngox7Y1NU-d6MMw7jnnrG64908RayolrNGso88CUKKztmZV_w3FuX9D6-Vi8LW4yGGGpZ0EJEwgvYO680UCcUWVjyyA4ymnBvT_jytl_zpAnc4hzGss1TJGkIVRKjEvXh3PXIkNOEP5_S7BZ1DbP1KZ_AUQVnRw</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Long, Doudou</creator><creator>Liu, Shifeng</creator><creator>Zhu, Jialin</creator><creator>Liu, Yahui</creator><creator>Zhou, Shiyuan</creator><creator>Yuan, Xiaoli</creator><creator>Orlov, Dmytro</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>ADTPV</scope><scope>AGCHP</scope><scope>AOWAS</scope><scope>D8T</scope><scope>D95</scope><scope>ZZAVC</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7860-749X</orcidid><orcidid>https://orcid.org/0000-0002-1115-4609</orcidid></search><sort><creationdate>20211101</creationdate><title>Improving Texture and Microstructure Homogeneity in High-Purity Ta Sheets by Warm Cross Rolling and Annealing</title><author>Long, Doudou ; Liu, Shifeng ; Zhu, Jialin ; Liu, Yahui ; Zhou, Shiyuan ; Yuan, Xiaoli ; Orlov, Dmytro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c433t-8fec92ddfc8a9a799e5998f5c7b645e8fdd8133faf77516c197159059ac2d36f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>135 warm cross rolling</topic><topic>135° warm cross rolling</topic><topic>Annealing</topic><topic>Contouring</topic><topic>Cross rolling</topic><topic>Deformation</topic><topic>Dislocation density</topic><topic>Dislocation mobility</topic><topic>Dislocation movement</topic><topic>Electron backscatter diffraction</topic><topic>Energy distribution</topic><topic>Engineering and Technology</topic><topic>Geometrically necessary dislocation</topic><topic>Grain boundaries</topic><topic>Grain size</topic><topic>Homogeneity</topic><topic>Internal energy</topic><topic>Materials Engineering</topic><topic>Materialteknik</topic><topic>Metallurgi och metalliska material</topic><topic>Metallurgy and Metallic Materials</topic><topic>Microstructure</topic><topic>Powder metallurgy</topic><topic>Purity</topic><topic>Recrystallization</topic><topic>Rolling texture</topic><topic>Schmid factor</topic><topic>Semiconductors</topic><topic>Shear strain</topic><topic>Sheets</topic><topic>Software</topic><topic>Strain distribution</topic><topic>Tantalum</topic><topic>Teknik</topic><topic>Texture</topic><topic>Titanium alloys</topic><topic>Warm rolling</topic><topic>Warm working</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Long, Doudou</creatorcontrib><creatorcontrib>Liu, Shifeng</creatorcontrib><creatorcontrib>Zhu, Jialin</creatorcontrib><creatorcontrib>Liu, Yahui</creatorcontrib><creatorcontrib>Zhou, Shiyuan</creatorcontrib><creatorcontrib>Yuan, Xiaoli</creatorcontrib><creatorcontrib>Orlov, Dmytro</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>SwePub</collection><collection>SWEPUB Lunds universitet full text</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Lunds universitet</collection><collection>SwePub Articles full text</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Metals (Basel )</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Long, Doudou</au><au>Liu, Shifeng</au><au>Zhu, Jialin</au><au>Liu, Yahui</au><au>Zhou, Shiyuan</au><au>Yuan, Xiaoli</au><au>Orlov, Dmytro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving Texture and Microstructure Homogeneity in High-Purity Ta Sheets by Warm Cross Rolling and Annealing</atitle><jtitle>Metals (Basel )</jtitle><date>2021-11-01</date><risdate>2021</risdate><volume>11</volume><issue>11</issue><spage>1665</spage><pages>1665-</pages><issn>2075-4701</issn><eissn>2075-4701</eissn><abstract>The evolution of texture and microstructure uniformity in high-purity tantalum (Ta) sheets during 135° warm cross rolling (WCR) was analyzed in detail. X-ray diffraction suggested that relatively uniform ‘ideal’ deformation texture distribution across the thickness could be obtained from WCR, since more potential slip systems could be activated. Electron backscatter diffraction (EBSD) results indicated that the change in strain path in warm rolling could enhance dislocations mobility and increase the probability of dislocations rearrangement and annihilation. Thus, the proportion of low-angle grain boundaries was significantly reduced, and more sub-grain boundaries or sub-grains were formed via WCR. The calculation of geometrically necessary dislocation density based on the strain gradient model supports this result. The analysis of relative Schmid factor combined with the strain contouring map indicated that inhomogeneous orientation-dependent grain subdivision could be effectively weakened, and relatively uniform strain distribution could be formed in the WCR sample. Upon annealing, uniform fine grain size and more randomly oriented grains were obtained in the WCR sample after the completion of recrystallization because of relatively uniform grain subdivision and stored energy distribution.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/met11111665</doi><orcidid>https://orcid.org/0000-0002-7860-749X</orcidid><orcidid>https://orcid.org/0000-0002-1115-4609</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2075-4701 |
ispartof | Metals (Basel ), 2021-11, Vol.11 (11), p.1665 |
issn | 2075-4701 2075-4701 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_4dc505bd259d491aa351c294234de486 |
source | DOAJ Directory of Open Access Journals; SWEPUB Freely available online; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals |
subjects | 135 warm cross rolling 135° warm cross rolling Annealing Contouring Cross rolling Deformation Dislocation density Dislocation mobility Dislocation movement Electron backscatter diffraction Energy distribution Engineering and Technology Geometrically necessary dislocation Grain boundaries Grain size Homogeneity Internal energy Materials Engineering Materialteknik Metallurgi och metalliska material Metallurgy and Metallic Materials Microstructure Powder metallurgy Purity Recrystallization Rolling texture Schmid factor Semiconductors Shear strain Sheets Software Strain distribution Tantalum Teknik Texture Titanium alloys Warm rolling Warm working |
title | Improving Texture and Microstructure Homogeneity in High-Purity Ta Sheets by Warm Cross Rolling and Annealing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T03%3A18%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20Texture%20and%20Microstructure%20Homogeneity%20in%20High-Purity%20Ta%20Sheets%20by%20Warm%20Cross%20Rolling%20and%20Annealing&rft.jtitle=Metals%20(Basel%20)&rft.au=Long,%20Doudou&rft.date=2021-11-01&rft.volume=11&rft.issue=11&rft.spage=1665&rft.pages=1665-&rft.issn=2075-4701&rft.eissn=2075-4701&rft_id=info:doi/10.3390/met11111665&rft_dat=%3Cproquest_doaj_%3E2602137700%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2602137700&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_4dc505bd259d491aa351c294234de486&rfr_iscdi=true |