Improving Texture and Microstructure Homogeneity in High-Purity Ta Sheets by Warm Cross Rolling and Annealing

The evolution of texture and microstructure uniformity in high-purity tantalum (Ta) sheets during 135° warm cross rolling (WCR) was analyzed in detail. X-ray diffraction suggested that relatively uniform ‘ideal’ deformation texture distribution across the thickness could be obtained from WCR, since...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metals (Basel ) 2021-11, Vol.11 (11), p.1665
Hauptverfasser: Long, Doudou, Liu, Shifeng, Zhu, Jialin, Liu, Yahui, Zhou, Shiyuan, Yuan, Xiaoli, Orlov, Dmytro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page 1665
container_title Metals (Basel )
container_volume 11
creator Long, Doudou
Liu, Shifeng
Zhu, Jialin
Liu, Yahui
Zhou, Shiyuan
Yuan, Xiaoli
Orlov, Dmytro
description The evolution of texture and microstructure uniformity in high-purity tantalum (Ta) sheets during 135° warm cross rolling (WCR) was analyzed in detail. X-ray diffraction suggested that relatively uniform ‘ideal’ deformation texture distribution across the thickness could be obtained from WCR, since more potential slip systems could be activated. Electron backscatter diffraction (EBSD) results indicated that the change in strain path in warm rolling could enhance dislocations mobility and increase the probability of dislocations rearrangement and annihilation. Thus, the proportion of low-angle grain boundaries was significantly reduced, and more sub-grain boundaries or sub-grains were formed via WCR. The calculation of geometrically necessary dislocation density based on the strain gradient model supports this result. The analysis of relative Schmid factor combined with the strain contouring map indicated that inhomogeneous orientation-dependent grain subdivision could be effectively weakened, and relatively uniform strain distribution could be formed in the WCR sample. Upon annealing, uniform fine grain size and more randomly oriented grains were obtained in the WCR sample after the completion of recrystallization because of relatively uniform grain subdivision and stored energy distribution.
doi_str_mv 10.3390/met11111665
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_4dc505bd259d491aa351c294234de486</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_4dc505bd259d491aa351c294234de486</doaj_id><sourcerecordid>2602137700</sourcerecordid><originalsourceid>FETCH-LOGICAL-c433t-8fec92ddfc8a9a799e5998f5c7b645e8fdd8133faf77516c197159059ac2d36f3</originalsourceid><addsrcrecordid>eNpVkd9rFDEQxxdRsLR98h8I-Ciryeb3YznUOzip1Ct9DNlkct1jd3Mmu-r992Z7Iu3AMJlh5pNhvlX1juCPlGr8aYCJLCYEf1VdNFjymklMXj97v62ucz7gYqoRWOuLatgMxxR_deMe7eDPNCdAdvToW-dSzFOa3VNpHYe4hxG66YS6Ea27_WP9fU5LurPoxyPAlFF7Qg82DWhVJjO6i32_UBfazTiCXbKr6k2wfYbrf_Gyuv_yebda19vbr5vVzbZ2jNKpVgGcbrwPTlltpdbAtVaBO9kKxkEF7xWhNNggJSfCES0J15hr6xpPRaCX1ebM9dEezDF1g00nE21nngox7Y1NU-d6MMw7jnnrG64908RayolrNGso88CUKKztmZV_w3FuX9D6-Vi8LW4yGGGpZ0EJEwgvYO680UCcUWVjyyA4ymnBvT_jytl_zpAnc4hzGss1TJGkIVRKjEvXh3PXIkNOEP5_S7BZ1DbP1KZ_AUQVnRw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2602137700</pqid></control><display><type>article</type><title>Improving Texture and Microstructure Homogeneity in High-Purity Ta Sheets by Warm Cross Rolling and Annealing</title><source>DOAJ Directory of Open Access Journals</source><source>SWEPUB Freely available online</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Long, Doudou ; Liu, Shifeng ; Zhu, Jialin ; Liu, Yahui ; Zhou, Shiyuan ; Yuan, Xiaoli ; Orlov, Dmytro</creator><creatorcontrib>Long, Doudou ; Liu, Shifeng ; Zhu, Jialin ; Liu, Yahui ; Zhou, Shiyuan ; Yuan, Xiaoli ; Orlov, Dmytro</creatorcontrib><description>The evolution of texture and microstructure uniformity in high-purity tantalum (Ta) sheets during 135° warm cross rolling (WCR) was analyzed in detail. X-ray diffraction suggested that relatively uniform ‘ideal’ deformation texture distribution across the thickness could be obtained from WCR, since more potential slip systems could be activated. Electron backscatter diffraction (EBSD) results indicated that the change in strain path in warm rolling could enhance dislocations mobility and increase the probability of dislocations rearrangement and annihilation. Thus, the proportion of low-angle grain boundaries was significantly reduced, and more sub-grain boundaries or sub-grains were formed via WCR. The calculation of geometrically necessary dislocation density based on the strain gradient model supports this result. The analysis of relative Schmid factor combined with the strain contouring map indicated that inhomogeneous orientation-dependent grain subdivision could be effectively weakened, and relatively uniform strain distribution could be formed in the WCR sample. Upon annealing, uniform fine grain size and more randomly oriented grains were obtained in the WCR sample after the completion of recrystallization because of relatively uniform grain subdivision and stored energy distribution.</description><identifier>ISSN: 2075-4701</identifier><identifier>EISSN: 2075-4701</identifier><identifier>DOI: 10.3390/met11111665</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>135 warm cross rolling ; 135° warm cross rolling ; Annealing ; Contouring ; Cross rolling ; Deformation ; Dislocation density ; Dislocation mobility ; Dislocation movement ; Electron backscatter diffraction ; Energy distribution ; Engineering and Technology ; Geometrically necessary dislocation ; Grain boundaries ; Grain size ; Homogeneity ; Internal energy ; Materials Engineering ; Materialteknik ; Metallurgi och metalliska material ; Metallurgy and Metallic Materials ; Microstructure ; Powder metallurgy ; Purity ; Recrystallization ; Rolling texture ; Schmid factor ; Semiconductors ; Shear strain ; Sheets ; Software ; Strain distribution ; Tantalum ; Teknik ; Texture ; Titanium alloys ; Warm rolling ; Warm working</subject><ispartof>Metals (Basel ), 2021-11, Vol.11 (11), p.1665</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c433t-8fec92ddfc8a9a799e5998f5c7b645e8fdd8133faf77516c197159059ac2d36f3</citedby><cites>FETCH-LOGICAL-c433t-8fec92ddfc8a9a799e5998f5c7b645e8fdd8133faf77516c197159059ac2d36f3</cites><orcidid>0000-0002-7860-749X ; 0000-0002-1115-4609</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,552,780,784,864,885,2102,27924,27925</link.rule.ids><backlink>$$Uhttps://lup.lub.lu.se/record/6a3d4f86-f15e-45cd-9e1c-8e8fa4efc353$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Long, Doudou</creatorcontrib><creatorcontrib>Liu, Shifeng</creatorcontrib><creatorcontrib>Zhu, Jialin</creatorcontrib><creatorcontrib>Liu, Yahui</creatorcontrib><creatorcontrib>Zhou, Shiyuan</creatorcontrib><creatorcontrib>Yuan, Xiaoli</creatorcontrib><creatorcontrib>Orlov, Dmytro</creatorcontrib><title>Improving Texture and Microstructure Homogeneity in High-Purity Ta Sheets by Warm Cross Rolling and Annealing</title><title>Metals (Basel )</title><description>The evolution of texture and microstructure uniformity in high-purity tantalum (Ta) sheets during 135° warm cross rolling (WCR) was analyzed in detail. X-ray diffraction suggested that relatively uniform ‘ideal’ deformation texture distribution across the thickness could be obtained from WCR, since more potential slip systems could be activated. Electron backscatter diffraction (EBSD) results indicated that the change in strain path in warm rolling could enhance dislocations mobility and increase the probability of dislocations rearrangement and annihilation. Thus, the proportion of low-angle grain boundaries was significantly reduced, and more sub-grain boundaries or sub-grains were formed via WCR. The calculation of geometrically necessary dislocation density based on the strain gradient model supports this result. The analysis of relative Schmid factor combined with the strain contouring map indicated that inhomogeneous orientation-dependent grain subdivision could be effectively weakened, and relatively uniform strain distribution could be formed in the WCR sample. Upon annealing, uniform fine grain size and more randomly oriented grains were obtained in the WCR sample after the completion of recrystallization because of relatively uniform grain subdivision and stored energy distribution.</description><subject>135 warm cross rolling</subject><subject>135° warm cross rolling</subject><subject>Annealing</subject><subject>Contouring</subject><subject>Cross rolling</subject><subject>Deformation</subject><subject>Dislocation density</subject><subject>Dislocation mobility</subject><subject>Dislocation movement</subject><subject>Electron backscatter diffraction</subject><subject>Energy distribution</subject><subject>Engineering and Technology</subject><subject>Geometrically necessary dislocation</subject><subject>Grain boundaries</subject><subject>Grain size</subject><subject>Homogeneity</subject><subject>Internal energy</subject><subject>Materials Engineering</subject><subject>Materialteknik</subject><subject>Metallurgi och metalliska material</subject><subject>Metallurgy and Metallic Materials</subject><subject>Microstructure</subject><subject>Powder metallurgy</subject><subject>Purity</subject><subject>Recrystallization</subject><subject>Rolling texture</subject><subject>Schmid factor</subject><subject>Semiconductors</subject><subject>Shear strain</subject><subject>Sheets</subject><subject>Software</subject><subject>Strain distribution</subject><subject>Tantalum</subject><subject>Teknik</subject><subject>Texture</subject><subject>Titanium alloys</subject><subject>Warm rolling</subject><subject>Warm working</subject><issn>2075-4701</issn><issn>2075-4701</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>D8T</sourceid><sourceid>DOA</sourceid><recordid>eNpVkd9rFDEQxxdRsLR98h8I-Ciryeb3YznUOzip1Ct9DNlkct1jd3Mmu-r992Z7Iu3AMJlh5pNhvlX1juCPlGr8aYCJLCYEf1VdNFjymklMXj97v62ucz7gYqoRWOuLatgMxxR_deMe7eDPNCdAdvToW-dSzFOa3VNpHYe4hxG66YS6Ea27_WP9fU5LurPoxyPAlFF7Qg82DWhVJjO6i32_UBfazTiCXbKr6k2wfYbrf_Gyuv_yebda19vbr5vVzbZ2jNKpVgGcbrwPTlltpdbAtVaBO9kKxkEF7xWhNNggJSfCES0J15hr6xpPRaCX1ebM9dEezDF1g00nE21nngox7Y1NU-d6MMw7jnnrG64908RayolrNGso88CUKKztmZV_w3FuX9D6-Vi8LW4yGGGpZ0EJEwgvYO680UCcUWVjyyA4ymnBvT_jytl_zpAnc4hzGss1TJGkIVRKjEvXh3PXIkNOEP5_S7BZ1DbP1KZ_AUQVnRw</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Long, Doudou</creator><creator>Liu, Shifeng</creator><creator>Zhu, Jialin</creator><creator>Liu, Yahui</creator><creator>Zhou, Shiyuan</creator><creator>Yuan, Xiaoli</creator><creator>Orlov, Dmytro</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>ADTPV</scope><scope>AGCHP</scope><scope>AOWAS</scope><scope>D8T</scope><scope>D95</scope><scope>ZZAVC</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7860-749X</orcidid><orcidid>https://orcid.org/0000-0002-1115-4609</orcidid></search><sort><creationdate>20211101</creationdate><title>Improving Texture and Microstructure Homogeneity in High-Purity Ta Sheets by Warm Cross Rolling and Annealing</title><author>Long, Doudou ; Liu, Shifeng ; Zhu, Jialin ; Liu, Yahui ; Zhou, Shiyuan ; Yuan, Xiaoli ; Orlov, Dmytro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c433t-8fec92ddfc8a9a799e5998f5c7b645e8fdd8133faf77516c197159059ac2d36f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>135 warm cross rolling</topic><topic>135° warm cross rolling</topic><topic>Annealing</topic><topic>Contouring</topic><topic>Cross rolling</topic><topic>Deformation</topic><topic>Dislocation density</topic><topic>Dislocation mobility</topic><topic>Dislocation movement</topic><topic>Electron backscatter diffraction</topic><topic>Energy distribution</topic><topic>Engineering and Technology</topic><topic>Geometrically necessary dislocation</topic><topic>Grain boundaries</topic><topic>Grain size</topic><topic>Homogeneity</topic><topic>Internal energy</topic><topic>Materials Engineering</topic><topic>Materialteknik</topic><topic>Metallurgi och metalliska material</topic><topic>Metallurgy and Metallic Materials</topic><topic>Microstructure</topic><topic>Powder metallurgy</topic><topic>Purity</topic><topic>Recrystallization</topic><topic>Rolling texture</topic><topic>Schmid factor</topic><topic>Semiconductors</topic><topic>Shear strain</topic><topic>Sheets</topic><topic>Software</topic><topic>Strain distribution</topic><topic>Tantalum</topic><topic>Teknik</topic><topic>Texture</topic><topic>Titanium alloys</topic><topic>Warm rolling</topic><topic>Warm working</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Long, Doudou</creatorcontrib><creatorcontrib>Liu, Shifeng</creatorcontrib><creatorcontrib>Zhu, Jialin</creatorcontrib><creatorcontrib>Liu, Yahui</creatorcontrib><creatorcontrib>Zhou, Shiyuan</creatorcontrib><creatorcontrib>Yuan, Xiaoli</creatorcontrib><creatorcontrib>Orlov, Dmytro</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>SwePub</collection><collection>SWEPUB Lunds universitet full text</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Lunds universitet</collection><collection>SwePub Articles full text</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Metals (Basel )</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Long, Doudou</au><au>Liu, Shifeng</au><au>Zhu, Jialin</au><au>Liu, Yahui</au><au>Zhou, Shiyuan</au><au>Yuan, Xiaoli</au><au>Orlov, Dmytro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving Texture and Microstructure Homogeneity in High-Purity Ta Sheets by Warm Cross Rolling and Annealing</atitle><jtitle>Metals (Basel )</jtitle><date>2021-11-01</date><risdate>2021</risdate><volume>11</volume><issue>11</issue><spage>1665</spage><pages>1665-</pages><issn>2075-4701</issn><eissn>2075-4701</eissn><abstract>The evolution of texture and microstructure uniformity in high-purity tantalum (Ta) sheets during 135° warm cross rolling (WCR) was analyzed in detail. X-ray diffraction suggested that relatively uniform ‘ideal’ deformation texture distribution across the thickness could be obtained from WCR, since more potential slip systems could be activated. Electron backscatter diffraction (EBSD) results indicated that the change in strain path in warm rolling could enhance dislocations mobility and increase the probability of dislocations rearrangement and annihilation. Thus, the proportion of low-angle grain boundaries was significantly reduced, and more sub-grain boundaries or sub-grains were formed via WCR. The calculation of geometrically necessary dislocation density based on the strain gradient model supports this result. The analysis of relative Schmid factor combined with the strain contouring map indicated that inhomogeneous orientation-dependent grain subdivision could be effectively weakened, and relatively uniform strain distribution could be formed in the WCR sample. Upon annealing, uniform fine grain size and more randomly oriented grains were obtained in the WCR sample after the completion of recrystallization because of relatively uniform grain subdivision and stored energy distribution.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/met11111665</doi><orcidid>https://orcid.org/0000-0002-7860-749X</orcidid><orcidid>https://orcid.org/0000-0002-1115-4609</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2075-4701
ispartof Metals (Basel ), 2021-11, Vol.11 (11), p.1665
issn 2075-4701
2075-4701
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_4dc505bd259d491aa351c294234de486
source DOAJ Directory of Open Access Journals; SWEPUB Freely available online; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals
subjects 135 warm cross rolling
135° warm cross rolling
Annealing
Contouring
Cross rolling
Deformation
Dislocation density
Dislocation mobility
Dislocation movement
Electron backscatter diffraction
Energy distribution
Engineering and Technology
Geometrically necessary dislocation
Grain boundaries
Grain size
Homogeneity
Internal energy
Materials Engineering
Materialteknik
Metallurgi och metalliska material
Metallurgy and Metallic Materials
Microstructure
Powder metallurgy
Purity
Recrystallization
Rolling texture
Schmid factor
Semiconductors
Shear strain
Sheets
Software
Strain distribution
Tantalum
Teknik
Texture
Titanium alloys
Warm rolling
Warm working
title Improving Texture and Microstructure Homogeneity in High-Purity Ta Sheets by Warm Cross Rolling and Annealing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T03%3A18%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20Texture%20and%20Microstructure%20Homogeneity%20in%20High-Purity%20Ta%20Sheets%20by%20Warm%20Cross%20Rolling%20and%20Annealing&rft.jtitle=Metals%20(Basel%20)&rft.au=Long,%20Doudou&rft.date=2021-11-01&rft.volume=11&rft.issue=11&rft.spage=1665&rft.pages=1665-&rft.issn=2075-4701&rft.eissn=2075-4701&rft_id=info:doi/10.3390/met11111665&rft_dat=%3Cproquest_doaj_%3E2602137700%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2602137700&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_4dc505bd259d491aa351c294234de486&rfr_iscdi=true