Explore Protein Conformational Space With Variational Autoencoder
Molecular dynamics (MD) simulations have been actively used in the study of protein structure and function. However, extensive sampling in the protein conformational space requires large computational resources and takes a prohibitive amount of time. In this study, we demonstrated that variational a...
Gespeichert in:
Veröffentlicht in: | Frontiers in molecular biosciences 2021-11, Vol.8, p.781635-781635, Article 781635 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 781635 |
---|---|
container_issue | |
container_start_page | 781635 |
container_title | Frontiers in molecular biosciences |
container_volume | 8 |
creator | Tian, Hao Jiang, Xi Trozzi, Francesco Xiao, Sian Larson, Eric C. Tao, Peng |
description | Molecular dynamics (MD) simulations have been actively used in the study of protein structure and function. However, extensive sampling in the protein conformational space requires large computational resources and takes a prohibitive amount of time. In this study, we demonstrated that variational autoencoders (VAEs), a type of deep learning model, can be employed to explore the conformational space of a protein through MD simulations. VAEs are shown to be superior to autoencoders (AEs) through a benchmark study, with low deviation between the training and decoded conformations. Moreover, we show that the learned latent space in the VAE can be used to generate unsampled protein conformations. Additional simulations starting from these generated conformations accelerated the sampling process and explored hidden spaces in the conformational landscape. |
doi_str_mv | 10.3389/fmolb.2021.781635 |
format | Article |
fullrecord | <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000725608800001CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_0dd63e9213564b10acf17ca8968be3b0</doaj_id><sourcerecordid>2607300906</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-ef6c945aa587e569dd52f8230c6c425cdbafed615bf90b2bfe324f336fe87eef3</originalsourceid><addsrcrecordid>eNqNkc1q3DAURk1paUKaB-imeFkoM72SLFnaFAaTtoFAAv3dCUm-ShRsayrLafv29YyTIdl1JXH1fecKTlG8JrBmTKr3vo-dXVOgZF1LIhh_VhxTqsRKSvXz-aP7UXE6jrcAQDiwWlQviyNWSaEE0ONic_Zn28WE5VWKGcNQNnHwMfUmhziYrvyyNQ7LHyHflN9NCg_jzZQjDi62mF4VL7zpRjy9P0-Kbx_PvjafVxeXn86bzcXKVYLnFXrhVMWN4bJGLlTbcuolZeCEqyh3rTUeW0G49QostR4ZrTxjwuNcQM9OivOF20Zzq7cp9Cb91dEEvR_EdK1NysF1qKFtBUNFCeOisgSM86R2RiohLTILM-vDwtpOtsfW4ZCT6Z5An74M4UZfxzstBWMcxAx4ew9I8deEY9Z9GB12nRkwTqOmAmoGoPZRskRdiuOY0B_WENA7k3pvUu9M6sXk3Hnz-H-HxoO3OSCXwG-00Y8uzDLwEJtd15QLkBJ22puQ996aOA15rr77_yr7BwZzvVQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2607300906</pqid></control><display><type>article</type><title>Explore Protein Conformational Space With Variational Autoencoder</title><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Tian, Hao ; Jiang, Xi ; Trozzi, Francesco ; Xiao, Sian ; Larson, Eric C. ; Tao, Peng</creator><creatorcontrib>Tian, Hao ; Jiang, Xi ; Trozzi, Francesco ; Xiao, Sian ; Larson, Eric C. ; Tao, Peng</creatorcontrib><description>Molecular dynamics (MD) simulations have been actively used in the study of protein structure and function. However, extensive sampling in the protein conformational space requires large computational resources and takes a prohibitive amount of time. In this study, we demonstrated that variational autoencoders (VAEs), a type of deep learning model, can be employed to explore the conformational space of a protein through MD simulations. VAEs are shown to be superior to autoencoders (AEs) through a benchmark study, with low deviation between the training and decoded conformations. Moreover, we show that the learned latent space in the VAE can be used to generate unsampled protein conformations. Additional simulations starting from these generated conformations accelerated the sampling process and explored hidden spaces in the conformational landscape.</description><identifier>ISSN: 2296-889X</identifier><identifier>EISSN: 2296-889X</identifier><identifier>DOI: 10.3389/fmolb.2021.781635</identifier><identifier>PMID: 34869602</identifier><language>eng</language><publisher>LAUSANNE: Frontiers Media Sa</publisher><subject>Biochemistry & Molecular Biology ; conformational space ; deep learning ; Life Sciences & Biomedicine ; Molecular Biosciences ; molecular dynamics ; protein system ; Science & Technology ; variational autoencoder</subject><ispartof>Frontiers in molecular biosciences, 2021-11, Vol.8, p.781635-781635, Article 781635</ispartof><rights>Copyright © 2021 Tian, Jiang, Trozzi, Xiao, Larson and Tao.</rights><rights>Copyright © 2021 Tian, Jiang, Trozzi, Xiao, Larson and Tao. 2021 Tian, Jiang, Trozzi, Xiao, Larson and Tao</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>27</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000725608800001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c465t-ef6c945aa587e569dd52f8230c6c425cdbafed615bf90b2bfe324f336fe87eef3</citedby><cites>FETCH-LOGICAL-c465t-ef6c945aa587e569dd52f8230c6c425cdbafed615bf90b2bfe324f336fe87eef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8633506/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8633506/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,2115,27929,27930,39263,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34869602$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tian, Hao</creatorcontrib><creatorcontrib>Jiang, Xi</creatorcontrib><creatorcontrib>Trozzi, Francesco</creatorcontrib><creatorcontrib>Xiao, Sian</creatorcontrib><creatorcontrib>Larson, Eric C.</creatorcontrib><creatorcontrib>Tao, Peng</creatorcontrib><title>Explore Protein Conformational Space With Variational Autoencoder</title><title>Frontiers in molecular biosciences</title><addtitle>FRONT MOL BIOSCI</addtitle><addtitle>Front Mol Biosci</addtitle><description>Molecular dynamics (MD) simulations have been actively used in the study of protein structure and function. However, extensive sampling in the protein conformational space requires large computational resources and takes a prohibitive amount of time. In this study, we demonstrated that variational autoencoders (VAEs), a type of deep learning model, can be employed to explore the conformational space of a protein through MD simulations. VAEs are shown to be superior to autoencoders (AEs) through a benchmark study, with low deviation between the training and decoded conformations. Moreover, we show that the learned latent space in the VAE can be used to generate unsampled protein conformations. Additional simulations starting from these generated conformations accelerated the sampling process and explored hidden spaces in the conformational landscape.</description><subject>Biochemistry & Molecular Biology</subject><subject>conformational space</subject><subject>deep learning</subject><subject>Life Sciences & Biomedicine</subject><subject>Molecular Biosciences</subject><subject>molecular dynamics</subject><subject>protein system</subject><subject>Science & Technology</subject><subject>variational autoencoder</subject><issn>2296-889X</issn><issn>2296-889X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>DOA</sourceid><recordid>eNqNkc1q3DAURk1paUKaB-imeFkoM72SLFnaFAaTtoFAAv3dCUm-ShRsayrLafv29YyTIdl1JXH1fecKTlG8JrBmTKr3vo-dXVOgZF1LIhh_VhxTqsRKSvXz-aP7UXE6jrcAQDiwWlQviyNWSaEE0ONic_Zn28WE5VWKGcNQNnHwMfUmhziYrvyyNQ7LHyHflN9NCg_jzZQjDi62mF4VL7zpRjy9P0-Kbx_PvjafVxeXn86bzcXKVYLnFXrhVMWN4bJGLlTbcuolZeCEqyh3rTUeW0G49QostR4ZrTxjwuNcQM9OivOF20Zzq7cp9Cb91dEEvR_EdK1NysF1qKFtBUNFCeOisgSM86R2RiohLTILM-vDwtpOtsfW4ZCT6Z5An74M4UZfxzstBWMcxAx4ew9I8deEY9Z9GB12nRkwTqOmAmoGoPZRskRdiuOY0B_WENA7k3pvUu9M6sXk3Hnz-H-HxoO3OSCXwG-00Y8uzDLwEJtd15QLkBJ22puQ996aOA15rr77_yr7BwZzvVQ</recordid><startdate>20211112</startdate><enddate>20211112</enddate><creator>Tian, Hao</creator><creator>Jiang, Xi</creator><creator>Trozzi, Francesco</creator><creator>Xiao, Sian</creator><creator>Larson, Eric C.</creator><creator>Tao, Peng</creator><general>Frontiers Media Sa</general><general>Frontiers Media S.A</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20211112</creationdate><title>Explore Protein Conformational Space With Variational Autoencoder</title><author>Tian, Hao ; Jiang, Xi ; Trozzi, Francesco ; Xiao, Sian ; Larson, Eric C. ; Tao, Peng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-ef6c945aa587e569dd52f8230c6c425cdbafed615bf90b2bfe324f336fe87eef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biochemistry & Molecular Biology</topic><topic>conformational space</topic><topic>deep learning</topic><topic>Life Sciences & Biomedicine</topic><topic>Molecular Biosciences</topic><topic>molecular dynamics</topic><topic>protein system</topic><topic>Science & Technology</topic><topic>variational autoencoder</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tian, Hao</creatorcontrib><creatorcontrib>Jiang, Xi</creatorcontrib><creatorcontrib>Trozzi, Francesco</creatorcontrib><creatorcontrib>Xiao, Sian</creatorcontrib><creatorcontrib>Larson, Eric C.</creatorcontrib><creatorcontrib>Tao, Peng</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Frontiers in molecular biosciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tian, Hao</au><au>Jiang, Xi</au><au>Trozzi, Francesco</au><au>Xiao, Sian</au><au>Larson, Eric C.</au><au>Tao, Peng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Explore Protein Conformational Space With Variational Autoencoder</atitle><jtitle>Frontiers in molecular biosciences</jtitle><stitle>FRONT MOL BIOSCI</stitle><addtitle>Front Mol Biosci</addtitle><date>2021-11-12</date><risdate>2021</risdate><volume>8</volume><spage>781635</spage><epage>781635</epage><pages>781635-781635</pages><artnum>781635</artnum><issn>2296-889X</issn><eissn>2296-889X</eissn><abstract>Molecular dynamics (MD) simulations have been actively used in the study of protein structure and function. However, extensive sampling in the protein conformational space requires large computational resources and takes a prohibitive amount of time. In this study, we demonstrated that variational autoencoders (VAEs), a type of deep learning model, can be employed to explore the conformational space of a protein through MD simulations. VAEs are shown to be superior to autoencoders (AEs) through a benchmark study, with low deviation between the training and decoded conformations. Moreover, we show that the learned latent space in the VAE can be used to generate unsampled protein conformations. Additional simulations starting from these generated conformations accelerated the sampling process and explored hidden spaces in the conformational landscape.</abstract><cop>LAUSANNE</cop><pub>Frontiers Media Sa</pub><pmid>34869602</pmid><doi>10.3389/fmolb.2021.781635</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2296-889X |
ispartof | Frontiers in molecular biosciences, 2021-11, Vol.8, p.781635-781635, Article 781635 |
issn | 2296-889X 2296-889X |
language | eng |
recordid | cdi_webofscience_primary_000725608800001CitationCount |
source | DOAJ Directory of Open Access Journals; PubMed Central Open Access; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Biochemistry & Molecular Biology conformational space deep learning Life Sciences & Biomedicine Molecular Biosciences molecular dynamics protein system Science & Technology variational autoencoder |
title | Explore Protein Conformational Space With Variational Autoencoder |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T05%3A24%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Explore%20Protein%20Conformational%20Space%20With%20Variational%20Autoencoder&rft.jtitle=Frontiers%20in%20molecular%20biosciences&rft.au=Tian,%20Hao&rft.date=2021-11-12&rft.volume=8&rft.spage=781635&rft.epage=781635&rft.pages=781635-781635&rft.artnum=781635&rft.issn=2296-889X&rft.eissn=2296-889X&rft_id=info:doi/10.3389/fmolb.2021.781635&rft_dat=%3Cproquest_webof%3E2607300906%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2607300906&rft_id=info:pmid/34869602&rft_doaj_id=oai_doaj_org_article_0dd63e9213564b10acf17ca8968be3b0&rfr_iscdi=true |