Explore Protein Conformational Space With Variational Autoencoder

Molecular dynamics (MD) simulations have been actively used in the study of protein structure and function. However, extensive sampling in the protein conformational space requires large computational resources and takes a prohibitive amount of time. In this study, we demonstrated that variational a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers in molecular biosciences 2021-11, Vol.8, p.781635-781635, Article 781635
Hauptverfasser: Tian, Hao, Jiang, Xi, Trozzi, Francesco, Xiao, Sian, Larson, Eric C., Tao, Peng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 781635
container_issue
container_start_page 781635
container_title Frontiers in molecular biosciences
container_volume 8
creator Tian, Hao
Jiang, Xi
Trozzi, Francesco
Xiao, Sian
Larson, Eric C.
Tao, Peng
description Molecular dynamics (MD) simulations have been actively used in the study of protein structure and function. However, extensive sampling in the protein conformational space requires large computational resources and takes a prohibitive amount of time. In this study, we demonstrated that variational autoencoders (VAEs), a type of deep learning model, can be employed to explore the conformational space of a protein through MD simulations. VAEs are shown to be superior to autoencoders (AEs) through a benchmark study, with low deviation between the training and decoded conformations. Moreover, we show that the learned latent space in the VAE can be used to generate unsampled protein conformations. Additional simulations starting from these generated conformations accelerated the sampling process and explored hidden spaces in the conformational landscape.
doi_str_mv 10.3389/fmolb.2021.781635
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000725608800001CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_0dd63e9213564b10acf17ca8968be3b0</doaj_id><sourcerecordid>2607300906</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-ef6c945aa587e569dd52f8230c6c425cdbafed615bf90b2bfe324f336fe87eef3</originalsourceid><addsrcrecordid>eNqNkc1q3DAURk1paUKaB-imeFkoM72SLFnaFAaTtoFAAv3dCUm-ShRsayrLafv29YyTIdl1JXH1fecKTlG8JrBmTKr3vo-dXVOgZF1LIhh_VhxTqsRKSvXz-aP7UXE6jrcAQDiwWlQviyNWSaEE0ONic_Zn28WE5VWKGcNQNnHwMfUmhziYrvyyNQ7LHyHflN9NCg_jzZQjDi62mF4VL7zpRjy9P0-Kbx_PvjafVxeXn86bzcXKVYLnFXrhVMWN4bJGLlTbcuolZeCEqyh3rTUeW0G49QostR4ZrTxjwuNcQM9OivOF20Zzq7cp9Cb91dEEvR_EdK1NysF1qKFtBUNFCeOisgSM86R2RiohLTILM-vDwtpOtsfW4ZCT6Z5An74M4UZfxzstBWMcxAx4ew9I8deEY9Z9GB12nRkwTqOmAmoGoPZRskRdiuOY0B_WENA7k3pvUu9M6sXk3Hnz-H-HxoO3OSCXwG-00Y8uzDLwEJtd15QLkBJ22puQ996aOA15rr77_yr7BwZzvVQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2607300906</pqid></control><display><type>article</type><title>Explore Protein Conformational Space With Variational Autoencoder</title><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Tian, Hao ; Jiang, Xi ; Trozzi, Francesco ; Xiao, Sian ; Larson, Eric C. ; Tao, Peng</creator><creatorcontrib>Tian, Hao ; Jiang, Xi ; Trozzi, Francesco ; Xiao, Sian ; Larson, Eric C. ; Tao, Peng</creatorcontrib><description>Molecular dynamics (MD) simulations have been actively used in the study of protein structure and function. However, extensive sampling in the protein conformational space requires large computational resources and takes a prohibitive amount of time. In this study, we demonstrated that variational autoencoders (VAEs), a type of deep learning model, can be employed to explore the conformational space of a protein through MD simulations. VAEs are shown to be superior to autoencoders (AEs) through a benchmark study, with low deviation between the training and decoded conformations. Moreover, we show that the learned latent space in the VAE can be used to generate unsampled protein conformations. Additional simulations starting from these generated conformations accelerated the sampling process and explored hidden spaces in the conformational landscape.</description><identifier>ISSN: 2296-889X</identifier><identifier>EISSN: 2296-889X</identifier><identifier>DOI: 10.3389/fmolb.2021.781635</identifier><identifier>PMID: 34869602</identifier><language>eng</language><publisher>LAUSANNE: Frontiers Media Sa</publisher><subject>Biochemistry &amp; Molecular Biology ; conformational space ; deep learning ; Life Sciences &amp; Biomedicine ; Molecular Biosciences ; molecular dynamics ; protein system ; Science &amp; Technology ; variational autoencoder</subject><ispartof>Frontiers in molecular biosciences, 2021-11, Vol.8, p.781635-781635, Article 781635</ispartof><rights>Copyright © 2021 Tian, Jiang, Trozzi, Xiao, Larson and Tao.</rights><rights>Copyright © 2021 Tian, Jiang, Trozzi, Xiao, Larson and Tao. 2021 Tian, Jiang, Trozzi, Xiao, Larson and Tao</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>27</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000725608800001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c465t-ef6c945aa587e569dd52f8230c6c425cdbafed615bf90b2bfe324f336fe87eef3</citedby><cites>FETCH-LOGICAL-c465t-ef6c945aa587e569dd52f8230c6c425cdbafed615bf90b2bfe324f336fe87eef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8633506/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8633506/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,2115,27929,27930,39263,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34869602$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tian, Hao</creatorcontrib><creatorcontrib>Jiang, Xi</creatorcontrib><creatorcontrib>Trozzi, Francesco</creatorcontrib><creatorcontrib>Xiao, Sian</creatorcontrib><creatorcontrib>Larson, Eric C.</creatorcontrib><creatorcontrib>Tao, Peng</creatorcontrib><title>Explore Protein Conformational Space With Variational Autoencoder</title><title>Frontiers in molecular biosciences</title><addtitle>FRONT MOL BIOSCI</addtitle><addtitle>Front Mol Biosci</addtitle><description>Molecular dynamics (MD) simulations have been actively used in the study of protein structure and function. However, extensive sampling in the protein conformational space requires large computational resources and takes a prohibitive amount of time. In this study, we demonstrated that variational autoencoders (VAEs), a type of deep learning model, can be employed to explore the conformational space of a protein through MD simulations. VAEs are shown to be superior to autoencoders (AEs) through a benchmark study, with low deviation between the training and decoded conformations. Moreover, we show that the learned latent space in the VAE can be used to generate unsampled protein conformations. Additional simulations starting from these generated conformations accelerated the sampling process and explored hidden spaces in the conformational landscape.</description><subject>Biochemistry &amp; Molecular Biology</subject><subject>conformational space</subject><subject>deep learning</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Molecular Biosciences</subject><subject>molecular dynamics</subject><subject>protein system</subject><subject>Science &amp; Technology</subject><subject>variational autoencoder</subject><issn>2296-889X</issn><issn>2296-889X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>DOA</sourceid><recordid>eNqNkc1q3DAURk1paUKaB-imeFkoM72SLFnaFAaTtoFAAv3dCUm-ShRsayrLafv29YyTIdl1JXH1fecKTlG8JrBmTKr3vo-dXVOgZF1LIhh_VhxTqsRKSvXz-aP7UXE6jrcAQDiwWlQviyNWSaEE0ONic_Zn28WE5VWKGcNQNnHwMfUmhziYrvyyNQ7LHyHflN9NCg_jzZQjDi62mF4VL7zpRjy9P0-Kbx_PvjafVxeXn86bzcXKVYLnFXrhVMWN4bJGLlTbcuolZeCEqyh3rTUeW0G49QostR4ZrTxjwuNcQM9OivOF20Zzq7cp9Cb91dEEvR_EdK1NysF1qKFtBUNFCeOisgSM86R2RiohLTILM-vDwtpOtsfW4ZCT6Z5An74M4UZfxzstBWMcxAx4ew9I8deEY9Z9GB12nRkwTqOmAmoGoPZRskRdiuOY0B_WENA7k3pvUu9M6sXk3Hnz-H-HxoO3OSCXwG-00Y8uzDLwEJtd15QLkBJ22puQ996aOA15rr77_yr7BwZzvVQ</recordid><startdate>20211112</startdate><enddate>20211112</enddate><creator>Tian, Hao</creator><creator>Jiang, Xi</creator><creator>Trozzi, Francesco</creator><creator>Xiao, Sian</creator><creator>Larson, Eric C.</creator><creator>Tao, Peng</creator><general>Frontiers Media Sa</general><general>Frontiers Media S.A</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20211112</creationdate><title>Explore Protein Conformational Space With Variational Autoencoder</title><author>Tian, Hao ; Jiang, Xi ; Trozzi, Francesco ; Xiao, Sian ; Larson, Eric C. ; Tao, Peng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-ef6c945aa587e569dd52f8230c6c425cdbafed615bf90b2bfe324f336fe87eef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biochemistry &amp; Molecular Biology</topic><topic>conformational space</topic><topic>deep learning</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Molecular Biosciences</topic><topic>molecular dynamics</topic><topic>protein system</topic><topic>Science &amp; Technology</topic><topic>variational autoencoder</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tian, Hao</creatorcontrib><creatorcontrib>Jiang, Xi</creatorcontrib><creatorcontrib>Trozzi, Francesco</creatorcontrib><creatorcontrib>Xiao, Sian</creatorcontrib><creatorcontrib>Larson, Eric C.</creatorcontrib><creatorcontrib>Tao, Peng</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Frontiers in molecular biosciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tian, Hao</au><au>Jiang, Xi</au><au>Trozzi, Francesco</au><au>Xiao, Sian</au><au>Larson, Eric C.</au><au>Tao, Peng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Explore Protein Conformational Space With Variational Autoencoder</atitle><jtitle>Frontiers in molecular biosciences</jtitle><stitle>FRONT MOL BIOSCI</stitle><addtitle>Front Mol Biosci</addtitle><date>2021-11-12</date><risdate>2021</risdate><volume>8</volume><spage>781635</spage><epage>781635</epage><pages>781635-781635</pages><artnum>781635</artnum><issn>2296-889X</issn><eissn>2296-889X</eissn><abstract>Molecular dynamics (MD) simulations have been actively used in the study of protein structure and function. However, extensive sampling in the protein conformational space requires large computational resources and takes a prohibitive amount of time. In this study, we demonstrated that variational autoencoders (VAEs), a type of deep learning model, can be employed to explore the conformational space of a protein through MD simulations. VAEs are shown to be superior to autoencoders (AEs) through a benchmark study, with low deviation between the training and decoded conformations. Moreover, we show that the learned latent space in the VAE can be used to generate unsampled protein conformations. Additional simulations starting from these generated conformations accelerated the sampling process and explored hidden spaces in the conformational landscape.</abstract><cop>LAUSANNE</cop><pub>Frontiers Media Sa</pub><pmid>34869602</pmid><doi>10.3389/fmolb.2021.781635</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2296-889X
ispartof Frontiers in molecular biosciences, 2021-11, Vol.8, p.781635-781635, Article 781635
issn 2296-889X
2296-889X
language eng
recordid cdi_webofscience_primary_000725608800001CitationCount
source DOAJ Directory of Open Access Journals; PubMed Central Open Access; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Biochemistry & Molecular Biology
conformational space
deep learning
Life Sciences & Biomedicine
Molecular Biosciences
molecular dynamics
protein system
Science & Technology
variational autoencoder
title Explore Protein Conformational Space With Variational Autoencoder
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T05%3A24%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Explore%20Protein%20Conformational%20Space%20With%20Variational%20Autoencoder&rft.jtitle=Frontiers%20in%20molecular%20biosciences&rft.au=Tian,%20Hao&rft.date=2021-11-12&rft.volume=8&rft.spage=781635&rft.epage=781635&rft.pages=781635-781635&rft.artnum=781635&rft.issn=2296-889X&rft.eissn=2296-889X&rft_id=info:doi/10.3389/fmolb.2021.781635&rft_dat=%3Cproquest_webof%3E2607300906%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2607300906&rft_id=info:pmid/34869602&rft_doaj_id=oai_doaj_org_article_0dd63e9213564b10acf17ca8968be3b0&rfr_iscdi=true