Seismic response of nonlinear soil-structure interaction systems through the Preisach formalism: the Messina Bell Tower case study

In this paper the seismic response of linear behaving structures resting on compliant soil is addressed through the application of the Preisach formalism to capture the soil nonlinearities. The novel application of the Preisach model of hysteresis for nonlinear soil-structure interaction problems is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of earthquake engineering 2022-05, Vol.20 (7), p.3485-3514
Hauptverfasser: Cacciola, P., Caliò, I., Fiorini, N., Occhipinti, G., Spina, D., Tombari, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper the seismic response of linear behaving structures resting on compliant soil is addressed through the application of the Preisach formalism to capture the soil nonlinearities. The novel application of the Preisach model of hysteresis for nonlinear soil-structure interaction problems is explored through the study of the seismic response of a real structure. Through a harmonic balance procedure, furthermore, simplified nonlinear springs and dashpots are derived in closed form for a ready and accurate evaluation of the nonlinear soil-structure interaction response. The selected case study is the bell tower of the Messina Cathedral in Italy. The Bell Tower hosts the largest and most complex mechanical and astronomical clock in the world and it has been recently equipped by a permanent seismic monitoring system. A pertinent finite element (FE) model including the superstructure and the soil underneath, has been defined using authentic drawings and engineering design reports. The modal properties of the FE model have been compared with the experimental ones, identified from environmental noise recorded through the seismic monitoring system. Furthermore, the FE model has been validated by means of acceleration time histories recorded at different floors during two independent seismic events. A nonlinear incremental dynamic analysis of the Bell Tower has been also performed. The seismic response obtained by the complete FE analysis, has been compared with the proposed Preisach lumped parameter model, assembled with nonlinear springs and nonlinear dashpots. The results are well in agreement, offering an alternative promising strategy for the nonlinear soil-structure interaction studies.
ISSN:1570-761X
1573-1456
DOI:10.1007/s10518-021-01268-w